Abstract Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin. 
                        more » 
                        « less   
                    
                            
                            Cross-Feedings, Competition, and Positive and Negative Synergies in a Four-Species Synthetic Community for Anaerobic Degradation of Cellulose to Methane
                        
                    
    
            ABSTRACT Complex interactions exist among microorganisms in a community to carry out ecological processes and adapt to changing environments. Here, we constructed a quad-culture consisting of a cellulolytic bacterium ( Ruminiclostridium cellulolyticum ), a hydrogenotrophic methanogen ( Methanospirillum hungatei ), an acetoclastic methanogen ( Methanosaeta concilii ), and a sulfate-reducing bacterium ( Desulfovibrio vulgaris ). The four microorganisms in the quad-culture cooperated via cross-feeding to produce methane using cellulose as the only carbon source and electron donor. The community metabolism of the quad-culture was compared with those of the R. cellulolyticum -containing tri-cultures, bi-cultures, and mono-culture. Methane production was higher in the quad-culture than the sum of the increases in the tri-cultures, which was attributed to a positive synergy of four species. In contrast, cellulose degradation by the quad-culture was lower than the additive effects of the tri-cultures which represented a negative synergy. The community metabolism of the quad-culture was compared between a control condition and a treatment condition with sulfate addition using metaproteomics and metabolic profiling. Sulfate addition enhanced sulfate reduction and decreased methane and CO 2 productions. The cross-feeding fluxes in the quad-culture in the two conditions were modeled using a community stoichiometric model. Sulfate addition strengthened metabolic handoffs from R. cellulolyticum to M. concilii and D. vulgaris and intensified substrate competition between M. hungatei and D. vulgaris . Overall, this study uncovered emergent properties of higher-order microbial interactions using a four-species synthetic community. IMPORTANCE A synthetic community was designed using four microbial species that together performed distinct key metabolic processes in the anaerobic degradation of cellulose to methane and CO 2 . The microorganisms exhibited expected interactions, such as cross-feeding of acetate from a cellulolytic bacterium to an acetoclastic methanogen and competition of H 2 between a sulfate reducing bacterium and a hydrogenotrophic methanogen. This validated our rational design of the interactions between microorganisms based on their metabolic roles. More interestingly, we also found positive and negative synergies as emergent properties of high-order microbial interactions among three or more microorganisms in cocultures. These microbial interactions can be quantitatively measured by adding and removing specific members. A community stoichiometric model was constructed to represent the fluxes in the community metabolic network. This study paved the way toward a more predictive understanding of the impact of environmental perturbations on microbial interactions sustaining geochemically significant processes in natural systems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1911781
- PAR ID:
- 10436734
- Editor(s):
- Zhao, Liping; Bello, Maria Gloria
- Date Published:
- Journal Name:
- mBio
- Volume:
- 14
- Issue:
- 2
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Prairie Pothole Region (PPR) of North America contains millions of small depressional wetlands with some of the highest methane (CH4) fluxes ever reported in terrestrial ecosystems. In saturated soils, two conventional paradigms are (a) methanogenesis is the final step in the redox ladder, occurring only after more thermodynamically favorable electron acceptors (e.g., sulfate) are reduced, and (b) CH4is primarily produced by acetoclastic and hydrogenotrophic pathways. However, previous work in PPR wetlands observed co‐occurrence of sulfate‐reduction and methanogenesis and the presence of diverse methanogenic substrates (i.e., methanol, DMS). This study investigated how methylotrophic methanogenesis—in addition to acetoclastic and hydrogenotrophic methanogenesis—significantly contributes to CH4flux in surface sediments and thus allows for the co‐occurrence of competing redox processes in PPR sediments. We addressed this aim through field studies in two distinct high CH4emitting wetlands in the PPR complex, which coupled microbial community compositional and functional inferences with depth‐resolved electrochemistry measurements in surficial wetland sediments. This study revealed methylotrophic methanogens as the dominant group of methanogens in the presence of abundant organic sulfate esters, which are likely used for sulfate reduction. Resulting high sulfide concentrations likely caused sulfide toxicity in hydrogenotrophic and acetoclastic methanogens. Additionally, the use of non‐competitive substrates by many methylotrophic methanogens allows these metabolisms to bypass thermodynamic constraints and can explain co‐existence patterns of sulfate‐reduction and methanogenesis. This study demonstrates that the current models of methanogenesis in wetland ecosystems insufficiently represent carbon cycling in some of the highest CH4emitting environments.more » « less
- 
            Methane, a greenhouse gas and energy source, is commonly studied using stable isotope signals as proxies for its formation processes. In subsurface environments, methane often exhibits equilibrium isotopic signals, but the equilibration process has never been demonstrated in the laboratory. We cocultured a hydrogenotrophic methanogen with an H2-producing bacterium under conditions (55°C, 10 megapascals) simulating a methane-bearing subsurface. This resulted in near-complete reversibility of methanogenesis, leading to equilibria for both hydrogen and carbon isotopes. The methanogen not only equilibrated kinetic isotope signals of initially produced methane but also modified the isotope signals of amended thermogenic methane. These findings suggest that hydrogenotrophic methanogenesis can overwrite the isotope signals of subsurface methane, distorting proxies for its origin and formation temperature—insights crucial for natural gas exploration.more » « less
- 
            Methane (CH4) and nitrous oxide (N2O) are major greenhouse gases that are predominantly generated by microbial activities in anoxic environments. N2O inhibition of methanogenesis has been reported, but comprehensive efforts to obtain kinetic information are lacking. Using the model methanogen Methanosarcina barkeri strain Fusaro and digester sludge-derived methanogenic enrichment cultures, we conducted growth yield and kinetic measurements and showed that micromolar concentrations of N2O suppress the growth of methanogens and CH4 production from major methanogenic substrate classes. Acetoclastic methanogenesis, estimated to account for two-thirds of the annual 1 billion metric tons of biogenic CH4, was most sensitive to N2O, with inhibitory constants (KI) in the range of 18–25 μM, followed by hydrogenotrophic (KI, 60–90 μM) and methylotrophic (KI, 110–130 μM) methanogenesis. Dissolved N2O concentrations exceeding these KI values are not uncommon in managed (i.e. fertilized soils and wastewater treatment plants) and unmanaged ecosystems. Future greenhouse gas emissions remain uncertain, particularly from critical zone environments (e.g. thawing permafrost) with large amounts of stored nitrogenous and carbonaceous materials that are experiencing unprecedented warming. Incorporating relevant feedback effects, such as the significant N2O inhibition on methanogenesis, can refine climate models and improve predictive capabilities.more » « less
- 
            Mackelprang, Rachel (Ed.)ABSTRACT The complexity of microbial communities hinders our understanding of how microbial diversity and microbe-microbe interactions impact community functions. Here, using six independent communities originating from the refuse dumps of leaf-cutter ants and enriched using the plant polymer cellulose as the sole source of carbon, we examine how changes in bacterial diversity and interactions impact plant biomass decomposition. Over up to 60 serial transfers (∼8 months) using Whatman cellulose filter paper, cellulolytic ability increased and then stabilized in four enrichment lines and was variable in two lines. Bacterial community characterization using 16S rRNA gene amplicon sequencing showed community succession differed between the highly cellulolytic enrichment lines and those that had slower and more variable cellulose degradation rates. Metagenomic and metatranscriptomic analyses revealed that Cellvibrio and/or Cellulomonas dominated each enrichment line and produced the majority of cellulase enzymes, while diverse taxa were retained within these communities over the duration of transfers. Interestingly, the less cellulolytic communities had a higher diversity of organisms competing for the cellulose breakdown product cellobiose, suggesting that cheating slowed cellulose degradation. In addition, we found competitive exclusion as an important factor shaping all of the communities, with a negative correlation of Cellvibrio and Cellulomonas abundance within individual enrichment lines and the expression of genes associated with the production of secondary metabolites, toxins, and other antagonistic compounds. Our results provide insights into how microbial diversity and competition affect the stability and function of cellulose-degrading communities. IMPORTANCE Microbial communities are a key driver of the carbon cycle through the breakdown of complex polysaccharides in diverse environments including soil, marine systems, and the mammalian gut. However, due to the complexity of these communities, the species-species interactions that impact community structure and ultimately shape the rate of decomposition are difficult to define. Here, we performed serial enrichment on cellulose using communities inoculated from leaf-cutter ant refuse dumps, a cellulose-rich environment. By concurrently tracking cellulolytic ability and community composition and through metagenomic and metatranscriptomic sequencing, we analyzed the ecological dynamics of the enrichment lines. Our data suggest that antagonism is prevalent in these communities and that competition for soluble sugars may slow degradation and lead to community instability. Together, these results help reveal the relationships between competition and polysaccharide decomposition, with implications in diverse areas ranging from microbial community ecology to cellulosic biofuels production.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    