skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Risk as a process: a history informed hazard planning approach applied to the 2018 post-fire debris flows, Montecito, California
Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979.We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters.  more » « less
Award ID(s):
2135879
PAR ID:
10436781
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Garcia-Ayllon_Veintimilla, Salvador
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in environmental science
Volume:
11
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Debris flows pose a significant hazard to communities in mountainous areas, and there is a continued need for methods to delineate hazard zones associated with debris-flow inundation. In certain situations, such as scenarios following wildfire, where there could be an abrupt increase in the likelihood and size of debris flows that necessitates a rapid hazard assessment, the computational demands of inundation models play a role in their utility. The inability to efficiently determine the downstream effects of anticipated debris-flow events remains a critical gap in our ability to understand, mitigate, and assess debris-flow hazards. To better understand the downstream effects of debris flows, we introduce a computationally efficient, reduced-complexity inundation model, which we refer to as the Progressive Debris-Flow routing and inundation model (ProDF). We calibrate ProDF against mapped inundation from five watersheds near Montecito, CA, that produced debris flows shortly after the 2017 Thomas Fire. ProDF reproduced 70% of mapped deposits across a 40 km 2 study area. While this study focuses on a series of post-wildfire debris flows, ProDF is not limited to simulating debris-flow inundation following wildfire and could be applied to any scenario where it is possible to estimate a debris-flow volume. However, given its ability to reproduce mapped debris-flow deposits downstream of the 2017 Thomas Fire burn scar, and the modest run time associated with a simulation over this 40 km 2 study area, results suggest ProDF may be particularly promising for post-wildfire hazard assessment applications. 
    more » « less
  2. Urban flooding is a growing threat due to land use and climate change. Vulnerable populations tend to have greater exposure to flooding as a result of historical societal and institutional processes. Most flood vulnerability studies focus on a single large flood, neglecting the impact of small, frequent floods. Therefore, there is a need to investigate inequitable flood exposure across a range of event magnitudes and frequencies. To explore this question, we develop a novel score of inequitable flood risk by defining risk as a function of frequency, exposure, and vulnerability. This analysis combines high-resolution, parcel-scale compounded fluvial and pluvial flood data with census data at the census block group scale. We focus on six census tracts within Athens-Clarke County, Georgia that are highly developed with diverse populations. We define vulnerable populations as non-Hispanic Black, Hispanic, and households under the poverty level and use dasymetric mapping techniques to calculate the over-representation of these populations in flood zones. Inequitable risks at each census tract (approximately neighborhood scale) were estimated for multiple (e.g., 5-, 10-, 20-, 50-, and 100-year) flood return periods. Results show that the relatively greatest flood risk inequities occur for the 10-year flood and not at the largest event. We also found that the size of inequity is dynamic, depending on the flood magnitude. Therefore, addressing a range of events including smaller, more frequent floods can increase equity and reveal opportunities that may be missed if only one event is considered. 
    more » « less
  3. Abstract Pluvial floods pose a significant threat to properties, yet comprehensive impact analysis is hindered by data limitations on pluvial inundation. To assess pluvial flood impacts, we leveraged U.S. flood insurance claims and policy records for a subset of properties outside 100-year floodplains, streamflow records, and nationwide precipitation data, enabling us to distinguish damage claims caused by pluvial floods over 1978–2021. Strikingly, 87.1% of the claims analyzed from this subset were due to pluvial floods. Utilizing these pluvial flood claims unveiled distinct regional patterns of pluvial impacts across the contiguous U.S. These patterns are informed by the relationship between claim frequency and precipitation within each region. Remarkably, despite the pervasiveness of impacts, many states are seeing declining uptake in pluvial flood insurance coverage. Our study highlights regions facing heightened pluvial flood risks and underscores the critical need for enhanced consideration of pluvial inundation within risk management frameworks. 
    more » « less
  4. Abstract This study examined the 70‐year history of clearcutting of old‐growth forest and associated road construction, floods, landslides, large wood in rivers, and channel change in the 64 km2Lookout Creek watershed in western Oregon, where forestry practices began in 1950 and largely ceased by the 1980s. Responses differed among three zones with distinctive geomorphic processes within the watershed: a glacially sculpted zone, an earthflow‐dominated zone, and a debris slide and debris flow‐dominated zone. Watershed response to floods was more related to the timing of road construction and clearcuts, past geomorphic events, and forest dynamics than to flood magnitude. Even small (1–3 year) floods generated geomorphic responses in the period of initial road construction and logging (1950–1964) and during ongoing logging in the early part of a 30‐year period between large flood events (1966–1995). The floods of 1964/65, 15 years after the onset of logging, produced much larger geomorphic responses than the flood of record (1996), more than a decade after logging ceased. Geomorphic response was negligible for the third largest event on record (2011) during the last period (1997–2020), when former clearcuts were 20 to 70‐year‐old forest plantations. Watershed response in each of five distinct time periods depended on conditions created during prior periods in the three zones. Understanding of watershed response to forestry requires integrated observation of forestry practices, floods, landslide susceptibility, wood delivery and movement, and channel change on time scales that capture responses to past and ongoing management practices and geophysical and biological factors and events. 
    more » « less
  5. Flooding risk results from complex interactions between hydrological hazards (e.g., riverine inundation during periods of heavy rainfall), exposure, vulnerability (e.g., the potential for structural damage or loss of life), and resilience (how well we recover, learn from, and adapt to past floods). Building on recent coupled conceptualizations of these complex interactions, we characterize human–flood interactions (collective memory and risk-enduring attitude) at a more comprehensive scale than has been attempted to date across 50 US metropolitan statistical areas with a sociohydrologic (SH) model calibrated with accessible local data (historical records of annual peak streamflow, flood insurance loss claims, active insurance policy records, and population density). A cluster analysis on calibrated SH model parameter sets for metropolitan areas identified two dominant behaviors: 1) “risk-enduring” cities with lower flooding defenses and longer memory of past flood loss events and 2) “risk-averse” cities with higher flooding defenses and reduced memory of past flooding. These divergent behaviors correlated with differences in local stream flashiness indices (i.e., the frequency and rapidity of daily changes in streamflow), maximum dam heights, and the proportion of White to non-White residents in US metropolitan areas. Risk-averse cities tended to exist within regions characterized by flashier streamflow conditions, larger dams, and larger proportions of White residents. Our research supports the development of SH models in urban metropolitan areas and the design of risk management strategies that consider both demographically heterogeneous populations, changing flood defenses, and temporal changes in community risk perceptions and tolerance. 
    more » « less