skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SPES: A Symbolic Approach to Proving Query Equivalence Under Bag Semantics
In database-as-a-service platforms, automated ver-ification of query equivalence helps eliminate redundant computation in the form of overlapping sub-queries. Researchers have proposed two pragmatic techniques to tackle this problem. The first approach consists of reducing the queries to algebraic expressions and proving their equivalence using an algebraic theory. The limitations of this technique are threefold. It cannot prove the equivalence of queries with significant differences in the attributes of their relational operators (e.g., predicates in the filter operator). It does not support certain widely-used SQL features (e.g., NULL values). Its verification procedure is computationally intensive. The second approach transforms this problem to a constraint satisfaction problem and leverages a general-purpose solver to determine query equivalence. This technique consists of deriving the symbolic representation of the queries and proving their equivalence by determining the query containment relationship between the symbolic expressions. While the latter approach addresses all the limitations of the former technique, it only proves the equivalence of queries under set semantics (i.e., output tables must not contain duplicate tuples). However, in practice, database applications use bag semantics (i.e., output tables may contain duplicate tuples) In this paper, we introduce a novel symbolic approach for proving query equivalence under bag semantics. We transform the problem of proving query equivalence under bag semantics to that of proving the existence of a bijective, identity map between tuples returned by the queries on all valid inputs. We classify SQL queries into four categories, and propose a set of novel category-specific verification algorithms. We implement this symbolic approach in SPES and demonstrate that it proves the equivalence of a larger set of query pairs (95/232) under bag semantics compared to the SOTA tools based on algebraic (30/232) and symbolic approaches (67/232) under set and bag semantics, respectively. Furthermore, SPES is 3X faster than the symbolic tool that proves equivalence under set semantics.  more » « less
Award ID(s):
1908984
PAR ID:
10436871
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings International Conference on Data Engineering
ISSN:
1084-4627
Page Range / eLocation ID:
pp. 2735-2748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proving the equivalence between SQL queries is a fundamental problem in database research. Existing solvers model queries using algebraic representations and convert such representations into first-order logic formulas so that query equivalence can be verified by solving a satisfiability problem. The main challenge lies in unbounded summations, which appear commonly in a query's algebraic representation in order to model common SQL features, such as projection and aggregate functions. Unfortunately, existing solvers handle unbounded summations in an ad-hoc manner based on heuristics or syntax comparison, which severely limits the set of queries that can be supported. This paper develops a new SQL equivalence prover called SQLSolver, which can handle unbounded summations in a principled way. Our key insight is to use the theory of LIA^*, which extends linear integer arithmetic formulas with unbounded sums and provides algorithms to translate a LIA^* formula to a LIA formula that can be decided using existing SMT solvers. We augment the basic LIA^* theory to handle several complex scenarios (such as nested unbounded summations) that arise from modeling real-world queries. We evaluate SQLSolver with 359 equivalent query pairs derived from the SQL rewrite rules in Calcite and Spark SQL. SQLSolver successfully proves 346 pairs of them, which significantly outperforms existing provers. 
    more » « less
  2. The task of SQL query equivalence checking is important in various real-world applications (including query rewriting and automated grading) that involve complex queries with integrity constraints; yet, state-of-the-art techniques are very limited in their capability of reasoning about complex features (e.g., those that involve sorting, case statement, rich integrity constraints, etc.) in real-life queries. To the best of our knowledge, we propose the first SMT-based approach and its implementation, VeriEQL, capable of proving and disproving bounded equivalence of complex SQL queries. VeriEQL is based on a new logical encoding that models query semantics over symbolic tuples using the theory of integers with uninterpreted functions. It is simple yet highly practical -- our comprehensive evaluation on over 20,000 benchmarks shows that VeriEQL outperforms all state-of-the-art techniques by more than one order of magnitude in terms of the number of benchmarks that can be proved or disproved. VeriEQL can also generate counterexamples that facilitate many downstream tasks (such as finding serious bugs in systems like MySQL and Apache Calcite). 
    more » « less
  3. What is a minimal set of tuples to delete from a database in order to eliminate all query answers? This problem is called the resilience of a query and is one of the key algorithmic problems underlying various forms of reverse data management, such as view maintenance, deletion propagation and causal responsibility. A long-open question is determining the conjunctive queries (CQs) for which resilience can be solved in PTIME. We shed new light on this problem by proposing a unified Integer Linear Programming (ILP) formulation. It is unified in that it can solve both previously studied restrictions (e.g., self-join-free CQs under set semantics that allow a PTIME solution) and new cases (all CQs under set or bag semantics). It is also unified in that all queries and all database instances are treated with the same approach, yet the algorithm is guaranteed to terminate in PTIME for all known PTIME cases. In particular, we prove that for all known easy cases, the optimal solution to our ILP is identical to a simpler Linear Programming (LP) relaxation, which implies that standard ILP solvers return the optimal solution to the original ILP in PTIME. Our approach allows us to explore new variants and obtain new complexity results. 1) It works under bag semantics, for which we give the first dichotomy results in the problem space. 2) We extend our approach to the related problem of causal responsibility and give a more fine-grained analysis of its complexity. 3) We recover easy instances for generally hard queries, including instances with read-once provenance and instances that become easy because of Functional Dependencies in the data. 4) We solve an open conjecture about a unified hardness criterion from PODS 2020 and prove the hardness of several queries of previously unknown complexity. 5) Experiments confirm that our findings accurately predict the asymptotic running times, and that our universal ILP is at times even quicker than a previously proposed dedicated flow algorithm. 
    more » « less
  4. Checking query equivalence is of great significance in database systems. Prior work in automated query equivalence checking sets the first steps in formally modeling and reasoning about query optimization rules, but only supports a limited number of query features. In this paper, we present Qed, a new framework for query equivalence checking based on bag semantics. Qed uses a new formalism called Q-expressions that models queries using different normal forms for efficient equivalence checking, and models features such as integrity constraints and NULLs in a principled way unlike prior work. Our formalism also allows us to define a new query fragment that encompasses many real-world queries with a complete equivalence checking algorithm, assuming a complete first-order theory solver. Empirically, Qed can verify 299 out of 444 query pairs extracted from the Calcite framework and 979 out of 1287 query pairs extracted from CockroachDB, which is more than 2× the number of cases proven by prior state-of-the-art solver. 
    more » « less
  5. Predicate-centric rules for rewriting queries is a key technique in optimizing queries. These include pushing down the predicate below the join and aggregation operators, or optimizing the order of evaluating predicates. However, many of these rules are only applicable when the predicate uses a certain set of columns. For example, to move the predicate below the join operator, the predicate must only use columns from one of the joined tables. By generating a predicate that satisfies these column constraints and preserves the semantics of the original query, the optimizer may leverage additional predicate-centric rules that were not applicable before. Researchers have proposed syntax-driven rewrite rules and machine learning algorithms for inferring such predicates. However, these techniques suffer from two limitations. First, they do not let the optimizer constrain the set of columns that may be used in the learned predicate. Second, machine learning algorithms do not guarantee that the learned predicate preserves semantics. In this paper, we present SIA, a system for learning predicates while being guided by counter-examples and a verification technique, that addresses these limitations. The key idea is to leverage satisfiability modulo theories to generate counter-examples and use them to iteratively learn a valid, optimal predicate. We formalize this problem by proving the key properties of synthesized predicates. We implement our approach in SIA and evaluate its efficacy and efficiency. We demonstrate that it synthesizes a larger set of valid predicates compared to prior approaches. On a collection of 200 queries derived from the TPC-H benchmark, SIA successfully rewrites 114 queries with learned predicates. 66 of these rewritten queries exhibit more than 2X speed up. 
    more » « less