The search for extraterrestrial intelligence (SETI) Ellipsoid is a geometric method for prioritizing technosignature observations based on the strategy of receiving signals synchronized to conspicuous astronomical events. Precise distances to nearby stars from Gaia makes constraining Ellipsoid crossing times possible. Here we explore the utility of using the Gaia Catalog of Nearby Stars to select targets on the SN 1987A SETI Ellipsoid, as well as the Ellipsoids defined by 278 classical novae. Less than 8% of stars within the 100 pc sample are inside the SN 1987A SETI Ellipsoid, meaning the vast majority of nearby stars are still viable targets for monitoring over time. We find an average of 734 stars per year within the 100 pc volume will intersect the Ellipsoid from SN 1987A, with ∼10% of those having distance uncertainties from Gaia better than 0.1 lyr.
more »
« less
Signal Synchronization Strategies and Time Domain SETI with Gaia DR3
Abstract Spatiotemporal techniques for signal coordination with actively transmitting extraterrestrial civilizations, without the need for prior communication, can constrain technosignature searches to a significantly smaller coordinate space. With the variable star catalog from Gaia Data Release 3, we explore two related signaling strategies: the SETI Ellipsoid, and that proposed by Seto, which are both based on the synchronization of transmissions with a conspicuous astrophysical event. This data set contains more than 10 million variable star candidates with light curves from the first three years of Gaia’s operational phase, between 2014 and 2017. Using four different historical supernovae as source events, we find that less than 0.01% of stars in the sample have crossing times, the times at which we would expect to receive synchronized signals on Earth, within the date range of available Gaia observations. For these stars, we present a framework for technosignature analysis that searches for modulations in the variability parameters by splitting the stellar light curve at the crossing time.
more »
« less
- Award ID(s):
- 1950897
- PAR ID:
- 10436928
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 166
- Issue:
- 2
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 79
- Size(s):
- Article No. 79
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The SETI Ellipsoid is a strategy for technosignature candidate selection that assumes that extraterrestrial civilizations who have observed a galactic-scale event—such as supernova 1987A—may use it as a Schelling point to broadcast synchronized signals indicating their presence. Continuous wide-field surveys of the sky offer a powerful new opportunity to look for these signals, compensating for the uncertainty in their estimated time of arrival. We explore sources in the TESS continuous viewing zone, which corresponds to 5% of all TESS data, observed during the first 3 yr of the mission. Using improved 3D locations for stars from Gaia Early Data Release 3, we identified 32 SN 1987A SETI Ellipsoid targets in the TESS continuous viewing zone with uncertainties better than 0.5 lt-yr. We examined the TESS light curves of these stars during the Ellipsoid crossing event and found no anomalous signatures. We discuss ways to expand this methodology to other surveys, more targets, and different potential signal types.more » « less
-
Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag. Aims. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. Methods. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce “motions”. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Results. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia . Finally, we report the most complete description of variability-induced motion within the CaMD to date. Conclusions. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.more » « less
-
Abstract Five self-lensing binaries (SLBs) have been discovered with Kepler light curves. They contain white dwarfs (WDs) in AU-scale orbits that gravitationally lens solar-type companions. Forming SLBs likely requires common envelope evolution when the WD progenitor is an AGB star and has a weakly bound envelope. No SLBs have yet been discovered with data from the Transiting Exoplanet Survey Satellite (TESS), which observes far more stars than Kepler did. Identifying self-lensing in TESS data is made challenging by the fact that TESS only observes most stars for ∼25 days at a time, so only a single lensing event will be observed for typical SLBs. TESS’s smaller aperture also makes it sensitive only to SLBs a factor of ∼100 brighter than those to which Kepler is sensitive. We demonstrate that TESS has nevertheless likely already observed ∼4 times more detectable SLBs than Kepler. We describe a search for non-repeating self-lensing signals in TESS light curves and present preliminary candidates for which spectroscopic follow-up is ongoing. We calculate the sensitivity of our search with injection and recovery tests on TESS and Kepler light curves. Based on the 5 SLBs discovered with Kepler light curves, we estimate that (1.1 ± 0.6)% of solar-type stars are orbited by WDs with periods of 100–1000 days. This implies a space density of AU-scale WD + main sequence (MS) binaries a factor of 20–100 larger than that of astrometrically identified WD + MS binaries with orbits in Gaia DR3. We conclude that the Gaia sample is still quite incomplete, mainly because WD + MS binaries can only be unambiguously identified as such for high mass ratios.more » « less
-
Abstract Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by ther-process. We confirm a star-to-star dispersion inr-process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the mainr-process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavierr-process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows nor-process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations.more » « less
An official website of the United States government
