skip to main content


Title: Rejuvenated Accretors Have Less Bound Envelopes: Impact of Roche Lobe Overflow on Subsequent Common Envelope Events
Abstract Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave sources. In the “classical” isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is “rejuvenated.” This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼42%–96% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, binaries experiencing first stable mass transfer may more easily survive subsequent CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended “blue loops,” which may have observational consequences for low-metallicity stellar populations and asteroseismology.  more » « less
Award ID(s):
2009255
NSF-PAR ID:
10437097
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
942
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The coalescence of two neutron stars was recently observed in a multi-messenger detection of gravitational wave (GW) and electromagnetic (EM) radiation. Binary neutron stars that merge within a Hubble time, as well as many other compact binaries, are expected to form via common envelope evolution. Yet five decades of research on common envelope evolution have not yet resulted in a satisfactory understanding of the multi-spatial multi-timescale evolution for the systems that lead to compact binaries. In this paper, we report on the first successful simulations of common envelope ejection leading to binary neutron star formation in 3D hydrodynamics. We simulate the dynamical inspiral phase of the interaction between a 12 M⊙ red supergiant and a 1.4 M⊙ neutron star for different initial separations and initial conditions. For all of our simulations, we find complete envelope ejection and a final orbital separation of ≈1.1 - 2.8R⊙ , leading to a binary neutron star that will merge within 0.01-1 Gyr. We find an αCE -equivalent efficiency of ≈0.1 - 0.4 for the models we study, but this may be specific for these extended progenitors. We fully resolve the core of the star to ≲0.005R⊙ and our 3D hydrodynamics simulations are informed by an adjusted 1D analytic energy formalism and a 2D kinematics study in order to overcome the prohibitive computational cost of simulating these systems. The framework we develop in this paper can be used to simulate a wide variety of interactions between stars, from stellar mergers to common envelope episodes leading to GW sources. 
    more » « less
  2. ABSTRACT

    Tidal evolution of eccentric binary systems containing at least one massive main-sequence (MS) star plays an important role in the formation scenarios of merging compact-object binaries. The dominant dissipation mechanism in such systems involves tidal excitation of outgoing internal gravity waves at the convective-radiative boundary and dissipation of the waves at the stellar envelope/surface. We have derived analytical expressions for the tidal torque and tidal energy transfer rate in such binaries for arbitrary orbital eccentricities and stellar rotation rates. These expressions can be used to study the spin and orbital evolution of eccentric binaries containing massive MS stars, such as the progenitors of merging neutron star binaries. Applying our results to the PSR J0045-7319 system, which has a massive B-star companion and an observed, rapidly decaying orbit, we find that for the standard radius of convective core based on non-rotating stellar models, the B-star must have a significant retrograde and differential rotation in order to explain the observed orbital decay rate. Alternatively, we suggest that the convective core may be larger as a result of rapid stellar rotation and/or mass transfer to the B-star in the recent past during the post-MS evolution of the pulsar progenitor.

     
    more » « less
  3. Abstract

    Gravitational-wave detectors are starting to reveal the redshift evolution of the binary black hole (BBH) merger rate,RBBH(z). We make predictions forRBBH(z) as a function of black hole mass for systems originating from isolated binaries. To this end, we investigate correlations between the delay time and black hole mass by means of the suite of binary population synthesis simulations,COMPAS. We distinguish two channels: the common envelope (CE), and the stable Roche-lobe overflow (RLOF) channel, characterized by whether the system has experienced a common envelope or not. We find that the CE channel preferentially produces BHs with masses below about 30Mand short delay times (tdelay≲ 1 Gyr), while the stable RLOF channel primarily forms systems with BH masses above 30Mand long delay times (tdelay≳ 1 Gyr). We provide a new fit for the metallicity-dependent specific star formation rate density based on the Illustris TNG simulations, and use this to convert the delay time distributions into a prediction ofRBBH(z). This leads to a distinct redshift evolution ofRBBH(z) for high and low primary BH masses. We furthermore find that, at high redshift,RBBH(z) is dominated by the CE channel, while at low redshift, it contains a large contribution (∼40%) from the stable RLOF channel. Our results predict that, for increasing redshifts, BBHs with component masses above 30Mwill become increasingly scarce relative to less massive BBH systems. Evidence of this distinct evolution ofRBBH(z) for different BH masses can be tested with future detectors.

     
    more » « less
  4. ABSTRACT

    Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($M\gtrsim 1.2\ {\rm M}_{\odot}$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.

     
    more » « less
  5. Abstract

    In their most recent observing run, the LIGO-Virgo-KAGRA Collaboration observed gravitational waves from compact binary mergers with highly asymmetric mass ratios, including both binary black holes (BBHs) and neutron star-black holes (NSBHs). It appears that NSBHs with mass ratiosq≃ 0.2 are more common than equally asymmetric BBHs, but the reason for this remains unclear. We use the binary population synthesis codecosmicto investigate the evolutionary pathways leading to the formation and merger of asymmetric compact binaries. We find that within the context of isolated binary stellar evolution, most asymmetric mergers start off as asymmetric stellar binaries. Because of the initial asymmetry, these systems tend to first undergo a dynamically unstable mass transfer phase. However, after the first star collapses into a compact object, the mass ratio is close to unity and the second phase of mass transfer is usually stable. According to our simulations, this stable mass transfer fails to shrink the orbit enough on its own for the system to merge. Instead, the natal kick received by the second-born compact object during its collapse is key in determining how many of these systems can merge. For the most asymmetric systems with mass ratios ofq≤ 0.1, the merging systems in our models receive an average kick magnitude of 255 km s−1during the second collapse, while the average kick for non-merging systems is 59 km s−1. Because lower mass compact objects, like neutron stars, are expected to receive larger natal kicks than higher mass BHs, this may explain why asymmetric NSBH systems merge more frequently than asymmetric BBH systems.

     
    more » « less