skip to main content

Title: Understanding surface wave modal content for high-resolution imaging of submarine sediments with distributed acoustic sensing
SUMMARY Ocean bottom distributed acoustic sensing (OBDAS) is emerging as a new measurement method providing dense, high-fidelity and broad-band seismic observations from fibre-optic cables deployed offshore. In this study, we focus on 35.7 km of a linear telecommunication cable located offshore the Sanriku region, Japan, and apply seismic interferometry to obtain a high-resolution 2-D shear wave velocity (VS) model below the cable. We first show that the processing steps applied to 13 d of continuous data prior to computing cross-correlation functions (CCFs) impact the modal content of surface waves. Continuous data pre-processed with 1-bit normalization allow us to retrieve dispersion images with high Scholte-wave energy between 0.5 and 5 Hz, whereas spatial aliasing dominates dispersion images above 3 Hz for non-1-bit CCFs. Moreover, the number of receiver channels considered to compute dispersion images also greatly affects the resolution of extracted surface-wave modes. To better understand the remarkably rich modal nature of OBDAS data (i.e. up to 30 higher modes in some regions), we simulate Scholte-wave dispersion curves for stepwise linear VS gradient media. For soft marine sediments, simulations confirm that a large number of modes can be generated in gradient media. Based on pre-processing and theoretical considerations, we extract surface wave dispersion curves from 1-bit CCFs spanning over 400 channels (i.e. ∼2 km) along the array and invert them to image the subsurface. The 2-D velocity profile generally exhibits slow shear wave velocities near the ocean floor that gradually increase with depth. Lateral variations are also observed. Flat bathymetry regions, where sediments tend to accumulate, reveal a larger number of Scholte-wave modes and lower shallow velocity layers than regions with steeper bathymetry. We also compare and discuss the velocity model with that from a previous study and finally discuss the combined effect of bathymetry and shallow VS layers on earthquake wavefields. Our results provide new constraints on the shallow submarine structure in the area and further demonstrate the potential of OBDAS for high-resolution offshore geophysical prospecting.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geophysical Journal International
Page Range / eLocation ID:
1668 to 1683
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geotechnical characterization of marine sediments remains an outstanding challenge for offshore energy development, including foundation design and site selection of wind turbines and offshore platforms. We demonstrate that passive distributed acoustic sensing (DAS) surveys offer a new solution for shallow offshore geotechnical investigation where seafloor power or communications cables with fiber-optic links are available. We analyze Scholte waves recorded by DAS on a 42 km power cable in the Belgian offshore area of the southern North Sea. Ambient noise crosscorrelations converge acceptably with just over one hour of data, permitting multimodal Scholte wave dispersion measurement and shear-wave velocity inversion along the cable. We identify anomalous off-axis Scholte wave arrivals in noise crosscorrelations at high frequencies. Using a simple passive source imaging approach, we associate these arrivals with individual wind turbines, which suggests they are generated by structural vibrations. While many technological barriers must be overcome before ocean-bottom DAS can be applied to global seismic monitoring in the deep oceans, high-frequency passive surveys for high-resolution geotechnical characterization and monitoring in coastal regions are easily achievable today. 
    more » « less

    The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparse instrumentation. An enticing alternative to conventional seismometers is the distributed acoustic sensing (DAS) technology that can convert fibre-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We conduct a DAS array field test in the city of Granada on the 26 and 27 August 2020, using a telecommunication fibre. In addition to the existing limitations of using DAS with unknown fibre-ground coupling conditions, the complex geometry of the fibre and limited data recording duration further challenge the extraction of surface-wave information from the ambient seismic field in such an urban environment. Therefore, we develop a processing scheme that incorporates a frequency–wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multimode dispersion images. We are able to use this data set to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insights into soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.

    more » « less

    Distributed acoustic sensing (DAS) technology is an emerging field of seismic sensing that enables recording ambient noise seismic data along the entire length of a fiber-optic cable at meter-scale resolution. Such a dense spatial resolution of recordings over long distances has not been possible using traditional methods because of limited hardware resources and logistical concerns in an urban environment. The low spatial resolution of traditional passive seismic acquisition techniques has limited the accuracy of the previously generated velocity profiles in many important urban regions, including the Reno-area basin, to the top 100 m of the underlying subsurface. Applying the method of seismic interferometry to ambient noise strain rate data obtained from a dark-fiber cable allows for generating noise cross correlations, which can be used to infer shallow and deep subsurface properties and basin geometry. We gathered DAS ambient noise seismic data for this study using a 12 km portion of a dark-fiber line in Reno, Nevada. We used gathered data to generate and invert dispersion curves to estimate the near-surface shear-wave velocity structure. Comparing the generated velocity profiles with previous regional studies shows good agreement in determining the average depth to bedrock and velocity variations in the analyzed domain. A synthetic experiment is also performed to verify the proposed framework further and better understand the effect of the infrastructural cover along the cable. The results obtained from this research provide insight into the application of DAS using dark-fiber lines in subsurface characterization in urban environments. It also discusses the potential effects of the conduit that covers such permanent fiber installations on the produced inversion results.

    more » « less
  4. Abstract

    We use Eikonal tomography to derive phase and group velocities of surface waves for the plate boundary region in Southern California. Seismic noise data in the period range 2 and 20 s recorded in year 2014 by 346 stations with ~1‐ to 30‐km station spacing are analyzed. Rayleigh and Love wave phase travel times are measured using vertical‐vertical and transverse‐transverse noise cross correlations, and group travel times are derived from the phase measurements. Using the Eikonal equation for each location and period, isotropic phase and group velocities and 2‐psi azimuthal anisotropy are determined statistically with measurements from different virtual sources. Starting with the SCEC Community Velocity Model, the observed 2.5‐ to 16‐s isotropic phase and group dispersion curves are jointly inverted on a 0.05° × 0.05° grid to obtain local 1‐D piecewise shear wave velocity (Vs) models. Compared to the starting model, the final results have generally lowerVsin the shallow crust (top 3–10 km), particularly in areas such as basins and fault zones. The results also show clear velocity contrasts across the San Andreas, San Jacinto, Elsinore, and Garlock Faults and suggest that the San Andreas Fault southeast of San Gorgonio Pass is dipping to the northeast. Investigation of the nonuniqueness of the 1‐DVsinversion suggests that imaging the top 3‐kmVsstructure requires either shorter period (≤2 s) surface wave dispersion measurements or other types of data set such as Rayleigh wave ellipticity.

    more » « less
  5. Abstract

    Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution.

    more » « less