skip to main content


Title: Are You Feeling Happy? the Effect of Emotions on People’s Interaction Experience Toward Empathetic Chatbots
Abstract

People may experience emotions before interacting with automated agents to seek information and support. However, existing literature has not well examined how human emotional states affect their interaction experience with agents or how automated agents should react to emotions. This study proposes to test how participants perceive an empathetic agent (chatbot) vs. a non-empathetic one under various emotional states (i.e., positive, neutral, negative) when the chatbot mediates the initial screening process for student advising. Participants are prompted to recall a previous emotional experience and have text-based conversations with the chatbot. The study confirms the importance of presenting empathetic cues in the design of automated agents to support human-agent collaboration. Participants who recall a positive experience are more sensitive to the chatbot’s empathetic behavior. The empathetic behavior of the chatbot improves participants’ satisfaction and makes those who recall a neutral experience feel more positive during the interaction. The results reveal that participants’ emotional states are likely to influence their tendency to self-disclose, interaction experience, and perception of the chatbot’s empathetic behavior. The study also highlights the increasing need for emotional acknowledgment of people who experience positive emotions so that design efforts need to be designated according to people’s dynamic emotional states.

 
more » « less
Award ID(s):
2105169
NSF-PAR ID:
10437240
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/

     
    more » « less
  2. Teachable agents are pedagogical agents that employ the ‘learning-by-teaching’ strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a ‘learning-by-teaching’ experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less
  3. Teachable agents are pedagogical agents that employ the 'learning-by-teaching' strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a 'learning-by-teaching' experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less
  4. In recent years, the popularity of AI-enabled conversational agents or chatbots has risen as an alternative to traditional online surveys to elicit information from people. However, there is a gap in using single-agent chatbots to converse and gather multi-faceted information across a wide variety of topics. Prior works suggest that single-agent chatbots struggle to understand user intentions and interpret human language during a multi-faceted conversation. In this work, we investigated how multi-agent chatbot systems can be utilized to conduct a multi-faceted conversation across multiple domains. To that end, we conducted a Wizard of Oz study to investigate the design of a multi-agent chatbot for gathering public input across multiple high-level domains and their associated topics. Next, we designed, developed, and evaluated CommunityBots - a multi-agent chatbot platform where each chatbot handles a different domain individually. To manage conversation across multiple topics and chatbots, we proposed a novel Conversation and Topic Management (CTM) mechanism that handles topic-switching and chatbot-switching based on user responses and intentions. We conducted a between-subject study comparing CommunityBots to a single-agent chatbot baseline with 96 crowd workers. The results from our evaluation demonstrate that CommunityBots participants were significantly more engaged, provided higher quality responses, and experienced fewer conversation interruptions while conversing with multiple different chatbots in the same session. We also found that the visual cues integrated with the interface helped the participants better understand the functionalities of the CTM mechanism, which enabled them to perceive changes in textual conversation, leading to better user satisfaction. Based on the empirical insights from our study, we discuss future research avenues for multi-agent chatbot design and its application for rich information elicitation.

     
    more » « less
  5. Social chatbots are designed to build emotional bonds with users, and thus it is particularly important to design these technologies so as to elicit positive perceptions from users. In the current study, we investigate the impacts transparent explanations of chatbots’ mechanisms have on users’ perceptions of the chatbots. A total of 914 participants were recruited from Amazon Mechanical Turk. They were randomly assigned to observe conversation between a hypothetical chatbot and user in one of the two-by-two experimental conditions: whether the participants received an explanation about how the chatbot was trained and whether the chatbot was framed as an intelligent entity or a machine. A fifth group, who believed they were observing interactions between two humans, served as a control. Analyses of participants’ responses to post-observation survey indicated that transparency positively affected perceptions of social chatbots by leading users to (1) find the chatbot less creepy, (2) feel greater affinity to the chatbot, and (3) perceive the chatbot as more socially intelligent, thought these effects were small. Importantly, transparency appeared to have a larger effect in increasing the perceived social intelligence among participants with lower prior AI knowledge. These findings have implications for the design of future social chatbots and support the addition of transparency and explanation for chatbot users. 
    more » « less