Abstract MotivationMany variants identified by genome-wide association studies (GWAS) have been found to affect multiple traits, either directly or through shared pathways. There is currently a wealth of GWAS data collected in numerous phenotypes, and analyzing multiple traits at once can increase power to detect shared variant effects. However, traditional meta-analysis methods are not suitable for combining studies on different traits. When applied to dissimilar studies, these meta-analysis methods can be underpowered compared to univariate analysis. The degree to which traits share variant effects is often not known, and the vast majority of GWAS meta-analysis only consider one trait at a time. ResultsHere, we present a flexible method for finding associated variants from GWAS summary statistics for multiple traits. Our method estimates the degree of shared effects between traits from the data. Using simulations, we show that our method properly controls the false positive rate and increases power when an effect is present in a subset of traits. We then apply our method to the North Finland Birth Cohort and UK Biobank datasets using a variety of metabolic traits and discover novel loci. Availability and implementationOur source code is available at https://github.com/lgai/CONFIT. Supplementary informationSupplementary data are available at Bioinformatics online. 
                        more » 
                        « less   
                    
                            
                            GhostKnockoff inference empowers identification of putative causal variants in genome-wide association studies
                        
                    
    
            Abstract Recent advances in genome sequencing and imputation technologies provide an exciting opportunity to comprehensively study the contribution of genetic variants to complex phenotypes. However, our ability to translate genetic discoveries into mechanistic insights remains limited at this point. In this paper, we propose an efficient knockoff-based method, GhostKnockoff, for genome-wide association studies (GWAS) that leads to improved power and ability to prioritize putative causal variants relative to conventional GWAS approaches. The method requires only Z-scores from conventional GWAS and hence can be easily applied to enhance existing and future studies. The method can also be applied to meta-analysis of multiple GWAS allowing for arbitrary sample overlap. We demonstrate its performance using empirical simulations and two applications: (1) a meta-analysis for Alzheimer’s disease comprising nine overlapping large-scale GWAS, whole-exome and whole-genome sequencing studies and (2) analysis of 1403 binary phenotypes from the UK Biobank data in 408,961 samples of European ancestry. Our results demonstrate that GhostKnockoff can identify putatively functional variants with weaker statistical effects that are missed by conventional association tests. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2210392
- PAR ID:
- 10437475
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Longitudinal phenotypes have been increasingly available in genome-wide association studies (GWAS) and electronic health record-based studies for identification of genetic variants that influence complex traits over time. For longitudinal binary data, there remain significant challenges in gene mapping, including misspecification of the model for phenotype distribution due to ascertainment. Here, we propose L-BRAT (Longitudinal Binary-trait Retrospective Association Test), a retrospective, generalized estimating equation-based method for genetic association analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, generalized linear mixed model-based association test. Both tests are retrospective score approaches in which genotypes are treated as random conditional on phenotype and covariates. They allow both static and time-varying covariates to be included in the analysis. Through simulations, we illustrated that retrospective association tests are robust to ascertainment and other types of phenotype model misspecification, and gain power over previous association methods. We applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated measures of cocaine use in a longitudinal cohort. Pathway analysis implicated association with opioid signaling and axonal guidance signaling pathways. Lastly, we replicated important pathways in an independent cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to detect important loci and pathways in a genome scan and to provide insights into genetic architecture of cocaine use.more » « less
- 
            ABSTRACT Genome-wide association studies (GWAS) can identify genetic variants responsible for naturally occurring and quantitative phenotypic variation. Association studies therefore provide a powerful complement to approaches that rely on de novo mutations for characterizing gene function. Although bacteria should be amenable to GWAS, few GWAS have been conducted on bacteria, and the extent to which nonindependence among genomic variants (e.g., linkage disequilibrium [LD]) and the genetic architecture of phenotypic traits will affect GWAS performance is unclear. We apply association analyses to identify candidate genes underlying variation in 20 biochemical, growth, and symbiotic phenotypes among 153 strains of Ensifer meliloti . For 11 traits, we find genotype-phenotype associations that are stronger than expected by chance, with the candidates in relatively small linkage groups, indicating that LD does not preclude resolving association candidates to relatively small genomic regions. The significant candidates show an enrichment for nucleotide polymorphisms (SNPs) over gene presence-absence variation (PAV), and for five traits, candidates are enriched in large linkage groups, a possible signature of epistasis. Many of the variants most strongly associated with symbiosis phenotypes were in genes previously identified as being involved in nitrogen fixation or nodulation. For other traits, apparently strong associations were not stronger than the range of associations detected in permuted data. In sum, our data show that GWAS in bacteria may be a powerful tool for characterizing genetic architecture and identifying genes responsible for phenotypic variation. However, careful evaluation of candidates is necessary to avoid false signals of association. IMPORTANCE Genome-wide association analyses are a powerful approach for identifying gene function. These analyses are becoming commonplace in studies of humans, domesticated animals, and crop plants but have rarely been conducted in bacteria. We applied association analyses to 20 traits measured in Ensifer meliloti , an agriculturally and ecologically important bacterium because it fixes nitrogen when in symbiosis with leguminous plants. We identified candidate alleles and gene presence-absence variants underlying variation in symbiosis traits, antibiotic resistance, and use of various carbon sources; some of these candidates are in genes previously known to affect these traits whereas others were in genes that have not been well characterized. Our results point to the potential power of association analyses in bacteria, but also to the need to carefully evaluate the potential for false associations.more » « less
- 
            Abstract The genome‐wide association studies (GWAS) typically use linear or logistic regression models to identify associations between phenotypes (traits) and genotypes (genetic variants) of interest. However, the use of regression with the additive assumption has potential limitations. First, the normality assumption of residuals is the one that is rarely seen in practice, and deviation from normality increases the Type‐I error rate. Second, building a model based on such an assumption ignores genetic structures, like, dominant, recessive, and protective‐risk cases. Ignoring genetic variants may result in spurious conclusions about the associations between a variant and a trait. We propose an assumption‐free model built upon data‐consistent inversion (DCI), which is a recently developed measure‐theoretic framework utilized for uncertainty quantification. This proposed DCI‐derived model builds a nonparametric distribution on model inputs that propagates to the distribution of observed data without the required normality assumption of residuals in the regression model. This characteristic enables the proposed DCI‐derived model to cover all genetic variants without emphasizing on additivity of the classic‐GWAS model. Simulations and a replication GWAS with data from the COPDGene demonstrate the ability of this model to control the Type‐I error rate at least as well as the classic‐GWAS (additive linear model) approach while having similar or greater power to discover variants in different genetic modes of transmission.more » « less
- 
            Abstract BackgroundAlthough genome-wide association studies (GWAS) have successfully located various genetic variants susceptible to Alzheimer’s Disease (AD), it is still unclear how specific variants interact with genes and tissues to elucidate pathologies associated with AD. Summary-data-based Mendelian Randomization (SMR) addresses this problem through an instrumental variable approach that integrates data from independent GWAS and expression quantitative trait locus (eQTL) studies in order to infer a causal effect of gene expression on a trait. ResultsOur study employed the SMR approach to integrate a set of meta-analytic cis-eQTL information from the Genotype-Tissue Expression (GTEx), CommonMind Consortium (CMC), and Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) consortiums with three sets of meta-analysis AD GWAS results. ConclusionsOur analysis identified twelve total gene probes (associated with twelve distinct genes) with a significant association with AD. Four of these genes survived a test of pleiotropy from linkage (the HEIDI test).Three of these genes – RP11-385F7.1, PRSS36, and AC012146.7 – have not yet been reported differentially expressed in the brain in the context of AD, and thus are the novel findings warranting further investigation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    