skip to main content


Title: Selecting coral species for reef restoration
Abstract

Humans have long sought to restore species but little attention has been directed at how to best select a subset of foundation species for maintaining rich assemblages that support ecosystems, like coral reefs and rainforests, which are increasingly threatened by environmental change.

We propose a two‐part hedging approach that selects optimized sets of species for restoration. The first part acknowledges that biodiversity supports ecosystem functions and services, and so it ensures precaution against loss by allocating an even spread of phenotypic traits. The second part maximizes species and ecosystem persistence by weighting species based on characteristics that are known to improve ecological persistence—for example abundance, species range and tolerance to environmental change.

Using existing phenotypic‐trait and ecological data for reef building corals, we identified sets of ecologically persistent species by examining marginal returns in occupancy of phenotypic trait space. We compared optimal sets of species with those from the world's southern‐most coral reef, which naturally harbours low coral diversity, to show these occupy much of the trait space. Comparison with an existing coral restoration program indicated that current corals used for restoration only cover part of the desired trait space and programs may be improved by including species with different traits.

Synthesis and applications. While there are many possible criteria for selecting species for restoration, the approach proposed here addresses the need to insure against unpredictable losses of ecosystem services by focusing on a wide range of phenotypic traits and ecological characteristics. Furthermore, the flexibility of the approach enables the functional goals of restoration to vary depending on environmental context, stakeholder values, and the spatial and temporal scales at which meaningful impacts can be achieved.

 
more » « less
Award ID(s):
1948946
NSF-PAR ID:
10437541
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
60
Issue:
8
ISSN:
0021-8901
Page Range / eLocation ID:
p. 1537-1544
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The staghorn coral was once prevalent throughout the Florida Reef Tract. However, the last few decades have seen a substantial reduction in the coral population because of disease outbreaks and increasing ocean temperatures. The staghorn coral shows no evidence of natural recovery, and so has been the focus of restoration efforts throughout much of the Florida region. Why put the time and effort into growing corals that are unlikely to survive within environmental conditions that continue to deteriorate? One reason is that the genetic make-up – the genotype – of some corals makes them more resilient to certain threats. However, there could be tradeoffs associated with these resilient traits. For example, a coral may be able to tolerate heat, but may easily succumb to disease. Previous studies have identified some staghorn coral genotypes that are resistant to an infection called white-band disease. The influence of high water temperatures on the ability of the coral to resist this disease was not known. There also remained the possibility that more varieties of coral might show similar disease resistance. To investigate Muller et al. conducted two experiments exposing staghorn coral genotypes to white-band diseased tissue before and during a coral bleaching event. Approximately 25% of the population of staghorn tested was resistant to white-band disease before the bleaching event. When the corals were exposed to white-band disease during bleaching, twice as much of the coral died. Two out of the 15, or 13%, of the coral genotypes tested were resistant to the disease even while bleached. Additionally, the level of bleaching within the coral genotypes was not related to how easily they developed white-band disease, suggesting that there are no direct tradeoffs between heat tolerance and disease resistance. These results suggest that there are very hardy corals, created by nature, already in existence. Incorporating these traits thoughtfully into coral restoration plans may increase the likelihood of population-based recovery. The Florida Reef Tract is estimated to be worth over six billion dollars to the state economy, providing over 70,000 jobs and attracting millions of tourists into Florida each year. However, much of these ecosystem services will be lost if living coral is not restored within the reef tract. The results presented by Muller et al. emphasize the need for maintaining high genetic diversity while increasing resiliency when restoring coral. They also emphasize that disease resistant corals, even when bleached, already exist and may be an integral part of the recovery of Florida’s reef tract. 
    more » « less
  2. Abstract

    Ecological restoration outcomes are highly variable, undermining efforts to recover biodiversity and ecosystem functions. One poorly understood source of variability is ‘year effects’—interannual variation in environmental conditions during the first year of restoration that alter successional trajectories of plant communities.

    There have been few experimental tests disentangling planting years from other differences among restoration projects (e.g. edaphic conditions, restoration approach), particularly those resolving mechanisms for year effects such as planting‐year rainfall. Moreover, past year effect studies focused almost exclusively on species‐level consequences. Therefore, the extent to which year effects influence the traits of communities is unknown.

    To address these gaps and provide a mechanistic test of how precipitation contributes to year effects, we conducted an experiment where we manipulated rainfall (drought, average and high levels) during the first growing season, replicated across three establishment year treatments to disentangle the effects of precipitation from other drivers of year effects. In each establishment year, we seeded the same species mix to initiate grassland restoration. We then surveyed plant community compositions annually for 5 years to quantify trait responses of restored communities to planting year rainfall.

    We found that variation in planting‐year precipitation altered community assembly trajectories by influencing community‐weighted mean (CWM) trait composition, and these effects persisted for at least 5 years. Over time, CWM specific leaf area and CWM seed mass decreased and CWM plant height increased. The effect of age on CWM plant height was stronger in plots that received mean and high watering treatments compared to drought treatments. This effect was also observed for CWM seed mass, albeit weaker.

    We also found some evidence for planting year effects unrelated to planting‐year rainfall for the three CWM traits, illustrating how interannually varying environmental conditions besides rainfall can generate persistent year effect on plant communities through their traits.

    Synthesis and applications. Our results provide evidence for planting year rainfall interacting with community assembly to alter the functional trait composition of restored grasslands. This suggests that interannual variation in rainfall during establishment is an important source of divergent biodiversity and functional outcomes in restored grasslands.

     
    more » « less
  3. Abstract

    The effects of nutrient pollution on coral reef ecosystems are multifaceted. Numerous experiments have sought to identify the physiological effects of nutrient enrichment on reef‐building corals, but the results have been variable and sensitive to choices of nutrient quantity, chemical composition and exposure duration.

    To test the effects of chronic, ecologically relevant nutrient enrichment on coral growth and photophysiology, we conducted a 5‐week continuous dosing experiment on two Hawaiian coral species,Porites compressaandPocillopora acuta. We acclimated coral fragments to five nutrient concentrations (0.1–7 µMand 0.06–2.24 µM) with constant stoichiometry 2.5:1 nitrate to phosphate) bracketing in situ observations from reefs throughout the Pacific.

    Nutrient enrichment linearly increased photophysiological performance of both species within 3 weeks. The effect of nutrients onP. acutaphotochemical efficiency increased through time while a consistent response inP. compressaindicated acclimation to elevated nutrients within 5 weeks. Endosymbiont densities and total chlorophyll concentrations also increased proportionally with nutrient enrichment inP. acuta, but not inP. compressa, revealing contrasting patterns of host–symbiont acclimatization.

    The two species also exhibited contrasting effects of nutrient enrichment on skeletal growth. Calcification was enhanced at low nutrient enrichment (1 µM) inP. acuta, but comparable to the control at higher concentrations, whereas calcification was reduced inP. compressa(30%–35%) above 3 µM.

    Stable isotope analysis revealed species‐specific nitrogen uptake dynamics in the coral–algal symbiosis. The endosymbionts ofP. acutaexhibited increased nitrogen uptake (decreased δ15N) and incorporation (19%–31% decrease in C:N ratios) across treatments. In contrast,P. compressaendosymbionts maintained constant δ15N values and low levels of nitrogen incorporation (9%–11% decrease in C:N ratios). The inability ofP. acutato regulate endosymbiont nutrient uptake may indicate an emerging destabilization in the coral–algal symbiosis under nutrient enrichment that could compromise resistance to additional environmental stressors.

    Our results highlight species‐specific differences in the coral–algal symbiosis, which influence responses to chronic nutrient enrichment. These findings showcase how symbioses can vary among closely related taxa and underscore the importance of considering how life‐history traits modify species response to environmental change.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. null (Ed.)
    Anthropogenic climate change and environmental degradation destroy coral reefs, the ecosystem services they provide, and the livelihoods of close to a billion people who depend on these services. Restoration approaches to increase the resilience of corals are therefore necessary to counter environmental pressures relevant to climate change projections. In this Review, we examine the natural processes that can increase the adaptive capacity of coral holobionts, with the aim of preserving ecosystem functioning under future ocean conditions. Current approaches that centre around restoring reef cover can be integrated with emerging approaches to enhance coral stress resilience and, thereby, allow reefs to regrow under a new set of environmental conditions. Emerging approaches such as standardized acute thermal stress assays, selective sexual propagation, coral probiotics, and environmental hardening could be feasible and scalable in the real world. However, they must follow decision-making criteria that consider the different reef, environmental, and ecological conditions. The implementation of adaptive interventions tailored around nature-based solutions will require standardized frameworks, appropriate ecological risk–benefit assessments, and analytical routines for consistent and effective utilization and global coordination. 
    more » « less
  5. Abstract

    For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.

     
    more » « less