Tidal evolution of eccentric binary systems containing at least one massive main-sequence (MS) star plays an important role in the formation scenarios of merging compact-object binaries. The dominant dissipation mechanism in such systems involves tidal excitation of outgoing internal gravity waves at the convective-radiative boundary and dissipation of the waves at the stellar envelope/surface. We have derived analytical expressions for the tidal torque and tidal energy transfer rate in such binaries for arbitrary orbital eccentricities and stellar rotation rates. These expressions can be used to study the spin and orbital evolution of eccentric binaries containing massive MS stars, such as the progenitors of merging neutron star binaries. Applying our results to the PSR J0045-7319 system, which has a massive B-star companion and an observed, rapidly decaying orbit, we find that for the standard radius of convective core based on non-rotating stellar models, the B-star must have a significant retrograde and differential rotation in order to explain the observed orbital decay rate. Alternatively, we suggest that the convective core may be larger as a result of rapid stellar rotation and/or mass transfer to the B-star in the recent past during the post-MS evolution of the pulsar progenitor.
We examine the reasons for discrepancies between two alternative approaches to modeling small-amplitude tides in binary systems. The direct solution (DS) approach solves the governing differential equations and boundary conditions directly, while the modal decomposition (MD) approach relies on a normal-mode expansion. Applied to a model for the primary star in the heartbeat system KOI-54, the two approaches predict quite different behavior of the secular tidal torque. The MD approach exhibits the pseudosynchronization phenomenon, where the torque due to the equilibrium tide changes sign at a single, well-defined, and theoretically predicted stellar rotation rate. The DS approach instead shows “blurred” pseudosynchronization, where positive and negative torques intermingle over a range of rotation rates. We trace a major source of these differences to an incorrect damping coefficient in the profile functions describing the frequency dependence of the MD expansion coefficients. With this error corrected, some differences between the approaches remain; however, both are in agreement that pseudosynchronization is blurred in the KOI-54 system. Our findings generalize to any type of star for which the tidal damping depends explicitly or implicitly on the forcing frequency.
more » « less- NSF-PAR ID:
- 10437566
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 48
- Size(s):
- Article No. 48
- Sponsoring Org:
- National Science Foundation
More Like this
-
Dynamical tides in eccentric binaries containing massive main-sequence stars: analytical expressions
ABSTRACT -
ABSTRACT We revisit the tidally excited oscillations (TEOs) in the A-type main-sequence eccentric binary KOI-54, the prototype of heartbeat stars. Although the linear tidal response of the star is a series of orbital-harmonic frequencies which are not stellar eigenfrequencies, we show that the non-linearly excited non-orbital-harmonic TEOs are eigenmodes. By carefully choosing the modes which satisfy the mode-coupling selection rules, a period spacing (ΔP) pattern of quadrupole gravity modes (ΔP ≈ 2520–2535 s) can be discerned in the Fourier spectrum, with a detection significance level of $99.9{{\ \rm per\ cent}}$. The inferred period spacing value agrees remarkably well with the theoretical l = 2, m = 0 g modes from a stellar model with the measured mass, radius, and effective temperature. We also find that the two largest-amplitude TEOs at N = 90, 91 harmonics are very close to resonance with l = 2, m = 0 eigenmodes, and likely come from different stars. Previous works on tidal oscillations primarily focus on the modelling of TEO amplitudes and phases, the high sensitivity of TEO amplitude to the frequency detuning (tidal forcing frequency minus the closest stellar eigenfrequency) requires extremely dense grids of stellar models and prevents us from constraining the stellar physical parameters easily. This work, however, opens the window of real tidal asteroseismology by using the eigenfrequencies of the star inferred from the non-linear TEOs and possibly very-close-to-resonance linear TEOs. Our seismic modelling of these identified eigen g-modes shows that the best-matching stellar models have (M ≈ 2.20, 2.35 M⊙) and super-solar metallicity, in good agreement with previous measurements.
-
Abstract We describe new functionality in the GYRE stellar oscillation code for modeling tides in binary systems. Using a multipolar expansion in space and a Fourier-series expansion in time, we decompose the tidal potential into a superposition of partial tidal potentials. The equations governing the small-amplitude response of a spherical star to an individual partial potential are the linear, non-radial, nonadiabatic oscillation equations with an extra inhomogeneous forcing term. We introduce a new executable,
gyre _tides , that directly solves these equations within the GYRE numerical framework. Applying this to selected problems, we find general agreement with results in the published literature but also uncover some differences between our direct solution methodology and the modal decomposition approach adopted by many authors. In its present formgyre _tides can model equilibrium and dynamical tides of aligned binaries in which radiative diffusion dominates the tidal dissipation (typically, intermediate- and high-mass stars on the main sequence). Milestones for future development include incorporation of other dissipation processes, spin–orbit misalignment, and the Coriolis force arising from rotation. -
Abstract Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot (
STSP ) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star (T eff= 5593 ± 27 K,R ⋆= 1.98 ± 0.05R ⊙) with an M-dwarf companion (M ⋆= 0.214 ± 0.006M ⊙).STSP uses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential rotation. The minimum fractional spotted area of KOI-340's primary is , while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star. -
Abstract High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.