skip to main content

Title: Forest mycorrhizal dominance depends on historical land use and nitrogen‐fixing trees

Most forests are recovering from human land use, making it critical to understand the effect of disturbance on forest recovery. Forests of the eastern United States have a long history of land use, but it is unknown whether historical disturbances have contributed to their transition from ectomycorrhizal (ECM) to arbuscular mycorrhizal (AM) tree dominance. Disturbance may promote nitrogen (N)‐fixing trees in early succession, which can elevate soil N availability even after they die. Higher soil N availability may facilitate the competitive success of AM trees over ECM trees, but such ‘N fixer founder effects’ have not been empirically tested.

Here, we analysed data from three land‐use disturbances in a temperate forest historically dominated by ECM trees: selective‐cutting (ranging from 0 to 52 m2 ha−1), clear‐cutting and agricultural abandonment. These disturbances occurred at different times, but long‐term data capture 3–7 decades of forest recovery.

We found that the AM tree fraction in contemporary forests was 2, 4, and 6‐fold higher following selective‐cutting, clear‐cutting and agricultural abandonment, respectively, compared to forest composition in 1934. Across these disturbances we also observed an increasing abundance of the N fixer black locust immediately following disturbance. Using a simulation model parameterized by data from black locust, we estimated historical rates of symbiotic N fixation to understand the relationship between N fixation and AM dominance in individual plots. We found that N fixation was positively associated with the growth of ECM trees generally, and oak and hickory specifically, only following light selective‐cutting (<12 or <18 m2 ha−1basal area extraction, respectively). Following higher levels of selective‐cutting and clear‐cutting, N fixation was positively associated with the growth of AM trees, particularly red maple and tulip poplar. Agricultural abandonment led to AM dominance regardless of N fixation rates.

Synthesis and applications. Our findings suggest that common land use practices and black locust, a native N fixer, can reduce the dominance of ECM trees. If N fixers are likely to proliferate following disturbance, we might maintain ECM dominance by cutting trees at low densities and by applying prescribed fire to remove N.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of Applied Ecology
Page Range / eLocation ID:
p. 1551-1561
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Carbon uptake by the terrestrial biosphere depends on supplies of new nitrogen (N) from symbiotic N fixation, but we lack a framework for scaling fixation accurately and for predicting its response to global change.

    We scaled symbiotic N fixation from individual N fixers (i.e. plants that host N‐fixing bacteria), by quantifying three key parameters—the abundance of N fixers, whether they are fixing N and their N fixation rates. We apply this framework to black locust, a widespread N‐fixing tree in temperate forests of the eastern United States, and harness long‐term data from southern Appalachian forests to scale fixation from trees to the landscape and over succession.

    Symbiotic N fixation at the landscape scale peaked in the first decade following forest disturbance, and then declined. This pattern was due to the declining density and declining fixation rates of individual black locust trees over succession. Independent of forest succession, and coincident with chronic atmospheric N deposition, we have evidence suggesting that nodule biomass produced by black locust trees has declined by 83% over the last three decades. This difference in nodule biomass translates to a maximum fixation rate of 11 kg N ha−1 year−1and a landscape average of 1.5 kg N ha−1 year−1in contemporary forests.

    Synthesis. We find key controls on symbiotic N fixation by black locust over space and time, suggesting lower fixation rates in eastern deciduous forests than previous estimates. Our scaling framework can be applied to other N fixers to aid predictions of symbiotic N fixation and ecosystem response to global change.

    more » « less
  2. Abstract

    Plant–fungal associations strongly influence forest carbon and nitrogen cycling. The prevailing framework for understanding these relationships is through the relative abundance of arbuscular (AM) versus ectomycorrhizal (EcM) trees. Ericoid mycorrhizal (ErM) shrubs are also common in forests and interactions between co‐occurring ErM shrubs and AM and EcM trees could shift soil biogeochemical responses. Here we test hypotheses that the effects of ErM shrubs on soil carbon and nitrogen either extend or are redundant with those of EcM trees.

    Using regional vegetation inventory data (>3,500 plot observations) we evaluated the frequency, richness and relative abundance of ErM plants in temperate forests in the eastern United States and examined their relationship with EcM plant cover. We then used surface soil (7 cm) data from 414 plots within a single forest to analyse relationships between ErM plant cover, relative EcM tree basal area and soil carbon and nitrogen concentrations while accounting for other biogeochemical controls, such as soil moisture.

    At both scales, we found a positive relationship between ErM and EcM plants, and the majority of ErM plants were in the shrub layer. Within the forest site, ErM plants strongly modulated tree mycorrhizal dominance effects. We found negative relationships between EcM relative basal area and soil carbon and nitrogen concentrations, but these relationships were weak to negligible in the absence of ErM plants. Both EcM relative basal area and ErM plant cover were positively associated with the soil carbon‐to‐nitrogen ratio. However, this relationship was driven by relatively lower nitrogen for EcM trees and higher carbon for ErM plants. As such, the functional effects of ErM plants on soil biogeochemistry neither extended nor were redundant with those of EcM trees.

    Synthesis. We found that ErM shrubs strongly influenced the relationship between tree mycorrhizal associations and soil biogeochemistry, and the effects of ErM shrubs and EcM trees on carbon and nitrogen were functionally distinct. Our findings suggest that ErM shrubs could confound interpretation of AM versus EcM tree effects in ecosystems where they co‐occur but also bolster growing calls to consider mycorrhizal functional types as variables that strongly influence forest biogeochemistry.

    more » « less
  3. Abstract Aim

    Trees associating with ectomycorrhizal (ECM) fungi typically occur in infertile soils and use nutrients more conservatively than arbuscular mycorrhizal (AM) trees. We hypothesized that ECM trees would have greater nutrient resorption (i.e., proportion of nutrients resorbed during leaf senescence) than AM trees.




    We synthesized nitrogen (N) and phosphorus (P) resorption data from 378 species from sub/tropical, temperate and boreal forests, including 43 studies where ECM and AM trees co‐occurred, and conducted a meta‐analysis. Additionally, we quantified N resorption in 45 plots varying in ECM‐AM tree abundances in the temperate deciduous forests of southern Indiana, USA.


    Overall, resorption patterns were driven primarily by mycorrhizal type, climate zone, and to a lesser degree, leaf habit. In the boreal forest, P resorption was 76% greater for ECM than AM trees (p < .05). In the sub/tropics, AM trees resorbed 30% more N than ECM trees. At the sites where AM and ECM trees co‐occurred, ECM trees resorbed more N in temperate forests (15% greater;p < .001) whereas AM trees tended to resorb more N in sub/tropical forests (by 29%;p = .08). Besides, deciduous ECM trees resorbed more N (10%) and P (15%) than deciduous AM trees, while evergreen ECM and AM trees did not differ. In the deciduous forests of Indiana, where ECM and AM trees co‐occurred, the relative abundance of ECM trees in a plot was positively correlated to plot‐scale N resorption (R2 = .25,p = .001), indicating greater nutrient conservatism with increasing ECM‐dominance.

    Main conclusions

    Our results indicate that mycorrhizal association – in addition to other factors – is correlated with the degree to which trees recycle nutrients, with the strongest effects occurring for N resorption by temperate deciduous trees.

    more » « less
  4. Abstract

    Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.

    We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).

    At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.

    Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes.

    more » « less
  5. Abstract

    Climate change is altering disturbance regimes and recovery rates of forests globally. The future of these forests will depend on how climate change interacts with management activities. Forest managers are in critical need of strategies to manage the effects of climate change.

    We co‐designed forest management scenarios with forest managers and stakeholders in the Klamath ecoregion of Oregon and California, a seasonally dry forest in the Western US subject to fire disturbances. The resultant scenarios span a broad range of forest and fire management strategies. Using a mechanistic forest landscape model, we simulated the scenarios as they interacted with forest growth, succession, wildfire disturbances and climate change. We analysed the simulations to (a) understand how scenarios affected the fire regime and (b) estimate how each scenario altered potential forest composition.

    Within the simulation timeframe (85 years), the scenarios had a large influence on fire regimes, with fire rotation periods ranging from 60 years in a minimal management scenario to 180 years with an industrial forestry style management scenario. Regardless of management strategy, mega‐fires (>100,000 ha) are expected to increase in frequency, driven by stronger climate forcing and extreme fire weather.

    High elevation conifers declined across all climate and management scenarios, reflecting an imbalance between forest types, climate and disturbance. At lower elevations (<1,800 m), most scenarios maintained forest cover levels; however, the minimal intervention scenario triggered 5 × 105 ha of mixed conifer loss by the end of the century in favour of shrublands, whereas the maximal intervention scenario added an equivalent amount of mixed conifer.

    Policy implications. Forest management scenarios that expand beyond current policies—including privatization and aggressive climate adaptation—can strongly influence forest trajectories despite a climate‐enhanced fire regime. Forest management can alter forest trajectories by increasing the pace and scale of actions taken, such as fuel reduction treatments, or by limiting other actions, such as fire suppression.

    more » « less