Abstract An ensemble postprocessing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to postprocess convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1–24-h forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier skill score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the intervariable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to postprocess CAM output using neural networks that can be applied to severe weather prediction. Significance StatementWe use a new machine learning (ML) technique to generate probabilistic forecasts of convective weather hazards, such as tornadoes and hailstorms, with the output from high-resolution numerical weather model forecasts. The new ML system generates an ensemble of synthetic forecast fields from a single forecast, which are then used to train ML models for convective hazard prediction. Using this ML-generated ensemble for training leads to improvements of 10%–20% in severe weather forecast skills compared to using other ML algorithms that use only output from the single forecast. This work is unique in that it explores the use of ML methods for producing synthetic forecasts of convective storm events and using these to train ML systems for high-impact convective weather prediction.
more »
« less
Evaluating Contour Band Depth as a Method for Understanding Ensemble Uncertainty
Abstract Estimating and predicting the state of the atmosphere is a probabilistic problem for which an ensemble modeling approach often is taken to represent uncertainty in the system. Common methods for examining uncertainty and assessing performance for ensembles emphasize pointwise statistics or marginal distributions. However, these methods lose specific information about individual ensemble members. This paper explores contour band depth (cBD), a method of analyzing uncertainty in terms of contours of scalar fields. cBD is fully nonparametric and induces an ordering on ensemble members that leads to box-and-whisker-plot-type visualizations of uncertainty for two-dimensional data. By applying cBD to synthetic ensembles, we demonstrate that it provides enhanced information about the spatial structure of ensemble uncertainty. We also find that the usefulness of the cBD analysis depends on the presence of multiple modes and multiple scales in the ensemble of contours. Finally, we apply cBD to compare various convection-permitting forecasts from different ensemble prediction systems and find that the value it provides in real-world applications compared to standard analysis methods exhibits clear limitations. In some cases, contour boxplots can provide deeper insight into differences in spatial characteristics between the different ensemble forecasts. Nevertheless, identification of outliers using cBD is not always intuitive, and the method can be especially challenging to implement for flow that exhibits multiple spatial scales (e.g., discrete convective cells embedded within a mesoscale weather system). Significance StatementPredictions of Earth’s atmosphere inherently come with some degree of uncertainty owing to incomplete observations and the chaotic nature of the system. Understanding that uncertainty is critical when drawing scientific conclusions or making policy decisions from model predictions. In this study, we explore a method for describing model uncertainty when the quantities of interest are well represented by contours. The method yields a quantitative visualization of uncertainty in both the location and the shape of contours to an extent that is not possible with standard uncertainty quantification methods and may eventually prove useful for the development of more robust techniques for evaluating and validating numerical weather models.
more »
« less
- Award ID(s):
- 1848363
- PAR ID:
- 10437594
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 151
- Issue:
- 8
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- p. 2097-2113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An ensemble postprocessing method is developed to improve the probabilistic forecasts of extreme precipitation events across the conterminous United States (CONUS). The method combines a 3D vision transformer (ViT) for bias correction with a latent diffusion model (LDM), a generative artificial intelligence (AI) method, to postprocess 6-hourly precipitation ensemble forecasts and produce an enlarged generative ensemble that contains spatiotemporally consistent precipitation trajectories. These trajectories are expected to improve the characterization of extreme precipitation events and offer skillful multiday accumulated and 6-hourly precipitation guidance. The method is tested using the Global Ensemble Forecast System (GEFS) precipitation forecasts out to day 6 and is verified against the Climatology-Calibrated Precipitation Analysis (CCPA) data. Verification results indicate that the method generated skillful ensemble members with improved continuous ranked probabilistic skill scores (CRPSSs) and Brier skill scores (BSSs) over the raw operational GEFS and a multivariate statistical postprocessing baseline. It showed skillful and reliable probabilities for events at extreme precipitation thresholds. Explainability studies were further conducted, which revealed the decision-making process of the method and confirmed its effectiveness on ensemble member generation. This work introduces a novel, generative AI–based approach to address the limitation of small numerical ensembles and the need for larger ensembles to identify extreme precipitation events. Significance StatementWe use a new artificial intelligence (AI) technique to improve extreme precipitation forecasts from a numerical weather prediction ensemble, generating more scenarios that better characterize extreme precipitation events. This AI-generated ensemble improved the accuracy of precipitation forecasts and probabilistic warnings for extreme precipitation events. The study explores AI methods to generate precipitation forecasts and explains the decision-making mechanisms of such AI techniques to prove their effectiveness.more » « less
-
Abstract Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as postprocessing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initialization dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and 2-m temperature 2 weeks in advance for the continental United States. For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models (a multimodel approach based on the prediction of the individual ML models). Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to using spatial information. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. In addition, we investigate feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability. Significance StatementAccurately forecasting temperature and precipitation on subseasonal time scales—2 weeks–2 months in advance—is extremely challenging. These forecasts would have immense value in agriculture, insurance, and economics. Our paper describes an application of machine learning techniques to improve forecasts of monthly average precipitation and 2-m temperature using lagged physics-based predictions and observational data 2 weeks in advance for the entire continental United States. For lagged ensembles, the proposed models outperform standard benchmarks such as historical averages and averages of physics-based predictions. Our findings suggest that utilizing the full set of physics-based predictions instead of the average enhances the accuracy of the final forecast.more » « less
-
Abstract Space weather indices are used commonly to drive forecasts of thermosphere density, which affects objects in low‐Earth orbit (LEO) through atmospheric drag. One commonly used space weather proxy,F10.7cm, correlates well with solar extreme ultra‐violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), which uses a linear algorithm to forecastF10.7cm. In this work, we introduce methods using neural network ensembles with multi‐layer perceptrons (MLPs) and long‐short term memory (LSTMs) to improve on the SET predictions. We make predictions only from historicalF10.7cmvalues. We investigate data manipulation methods (backwards averaging and lookback) as well as multi step and dynamic forecasting. This work shows an improvement over the popular persistence and the operational SET model when using ensemble methods. The best models found in this work are ensemble approaches using multi step or a combination of multi step and dynamic predictions. Nearly all approaches offer an improvement, with the best models improving between 48% and 59% on relative MSE with respect to persistence. Other relative error metrics were shown to improve greatly when ensembles methods were used. We were also able to leverage the ensemble approach to provide a distribution of predicted values; allowing an investigation into forecast uncertainty. Our work found models that produced less biased predictions at elevated and high solar activity levels. Uncertainty was also investigated through the use of a calibration error score metric (CES), our best ensemble reached similar CES as other work.more » « less
-
Abstract Obtaining a faithful probabilistic depiction of moist convection is complicated by unknown errors in subgrid-scale physical parameterization schemes, invalid assumptions made by data assimilation (DA) techniques, and high system dimensionality. As an initial step toward untangling sources of uncertainty in convective weather regimes, we evaluate a novel Bayesian data assimilation methodology based on particle filtering within a WRF ensemble analysis and forecasting system. Unlike most geophysical DA methods, the particle filter (PF) represents prior and posterior error distributions nonparametrically rather than assuming a Gaussian distribution and can accept any type of likelihood function. This approach is known to reduce bias introduced by Gaussian approximations in low-dimensional and idealized contexts. The form of PF used in this research adopts a dimension-reduction strategy, making it affordable for typical weather applications. The present study examines posterior ensemble members and forecasts for select severe weather events between 2019 and 2020, comparing results from the PF with those from an ensemble Kalman filter (EnKF). We find that assimilating with a PF produces posterior quantities for microphysical variables that are more consistent with model climatology than comparable quantities from an EnKF, which we attribute to a reduction in DA bias. These differences are significant enough to impact the dynamic evolution of convective systems via cold pool strength and propagation, with impacts to forecast verification scores depending on the particular microphysics scheme. Our findings have broad implications for future approaches to the selection of physical parameterization schemes and parameter estimation within preexisting data assimilation frameworks. Significance StatementThe accurate prediction of severe storms using numerical weather models depends on effective parameterization schemes for small-scale processes and the assimilation of incomplete observational data in a manner that faithfully represents the probabilistic state of the atmosphere. Current generation methods for data assimilation typically assume a standard form for the error distributions of relevant quantities, which can introduce bias that not only hinders numerical prediction, but that can also confound the characterization of errors from the model itself. The current study performs data assimilation using a novel method that does not make such assumptions and explores characteristics of resulting model fields and forecasts that might make such a method useful for improving model parameterization schemes.more » « less
An official website of the United States government
