skip to main content

This content will become publicly available on December 1, 2024

Title: A microfluidic approach for label-free identification of small-sized microplastics in seawater
Abstract Marine microplastics are emerging as a growing environmental concern due to their potential harm to marine biota. The substantial variations in their physical and chemical properties pose a significant challenge when it comes to sampling and characterizing small-sized microplastics. In this study, we introduce a novel microfluidic approach that simplifies the trapping and identification process of microplastics in surface seawater, eliminating the need for labeling. We examine various models, including support vector machine, random forest, convolutional neural network (CNN), and residual neural network (ResNet34), to assess their performance in identifying 11 common plastics. Our findings reveal that the CNN method outperforms the other models, achieving an impressive accuracy of 93% and a mean area under the curve of 98 ± 0.02%. Furthermore, we demonstrate that miniaturized devices can effectively trap and identify microplastics smaller than 50 µm. Overall, this proposed approach facilitates efficient sampling and identification of small-sized microplastics, potentially contributing to crucial long-term monitoring and treatment efforts.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pollen identification is necessary for several subfields of geology, ecology, and evolutionary biology. However, the existing methods for pollen identification are laborious, time-consuming, and require highly skilled scientists. Therefore, there is a pressing need for an automated and accurate system for pollen identification, which can be beneficial for both basic research and applied issues such as identifying airborne allergens. In this study, we propose a deep learning (DL) approach to classify pollen grains in the Great Basin Desert, Nevada, USA. Our dataset consisted of 10,000 images of 40 pollen species. To mitigate the limitations imposed by the small volume of our training dataset, we conducted an in-depth comparative analysis of numerous pre-trained Convolutional Neural Network (CNN) architectures utilizing transfer learning methodologies. Simultaneously, we developed and incorporated an innovative CNN model, serving to augment our exploration and optimization of data modeling strategies. We applied different architectures of well-known pre-trained deep CNN models, including AlexNet, VGG-16, MobileNet-V2, ResNet (18, 34, and 50, 101), ResNeSt (50, 101), SE-ResNeXt, and Vision Transformer (ViT), to uncover the most promising modeling approach for the classification of pollen grains in the Great Basin. To evaluate the performance of the pre-trained deep CNN models, we measured accuracy, precision, F1-Score, and recall. Our results showed that the ResNeSt-110 model achieved the best performance, with an accuracy of 97.24%, precision of 97.89%, F1-Score of 96.86%, and recall of 97.13%. Our results also revealed that transfer learning models can deliver better and faster image classification results compared to traditional CNN models built from scratch. The proposed method can potentially benefit various fields that rely on efficient pollen identification. This study demonstrates that DL approaches can improve the accuracy and efficiency of pollen identification, and it provides a foundation for further research in the field.

    more » « less
  2. Deformable Convolutional Networks (DCN) have been proposed as a powerful tool to boost the representation power of Convolutional Neural Networks (CNN) in computer vision tasks via adaptive sampling of the input feature map. Much like vision transformers, DCNs utilize a more flexible inductive bias than standard CNNs and have also been shown to improve performance of particular models. For example, drop-in DCN layers were shown to increase the AP score of Mask RCNN by 10.6 points while introducing only 1% additional parameters and FLOPs, improving the state-of-the art model at the time of publication. However, despite evidence that more DCN layers placed earlier in the network can further improve performance, we have not seen this trend continue with further scaling of deformations in CNNs, unlike for vision transformers. Benchmarking experiments show that a realistically sized DCN layer (64H×64W, 64 in-out channel) incurs a 4× slowdown on a GPU platform, discouraging the more ubiquitous use of deformations in CNNs. These slowdowns are caused by the irregular input-dependent access patterns of the bilinear interpolation operator, which has a disproportionately low arithmetic intensity (AI) compared to the rest of the DCN. To address the disproportionate slowdown of DCNs and enable their expanded use in CNNs, we propose DefT, a series of workload-aware optimizations for DCN kernels. DefT identifies performance bottlenecks in DCNs and fuses specific operators that are observed to limit DCN AI. Our approach also uses statistical information of DCN workloads to adapt the workload tiling to the DCN layer dimensions, minimizing costly out-of-boundary input accesses. Experimental results show that DefT mitigates up to half of DCN slowdown over the current-art PyTorch implementation. This translates to a layerwise speedup of up to 134% and a reduction of normalized training time of 46% on a fully DCN-enabled ResNet model. 
    more » « less
  3. The extensive use of carbon nanomaterials such as carbon nanotubes/nanofibers (CNTs/CNFs) in industrial settings has raised concerns over the potential health risks associated with occupational exposure to these materials. These exposures are commonly in the form of CNT/CNF-containing aerosols, resulting in a need for a reliable structure classification protocol to perform meaningful exposure assessments. However, airborne carbonaceous nanomaterials are very likely to form mixtures of individual nano-sized particles and micron-sized agglomerates with complex structures and irregular shapes, making structure identification and classification extremely difficult. While manual classification from transmission electron microscopy (TEM) images is widely used, it is time-consuming due to the lack of automation tools for structure identification. In the present study, we applied a convolutional neural network (CNN) based machine learning and computer vision method to recognize and classify airborne CNT/CNF particles from TEM images. We introduced a transfer learning approach to represent images by hypercolumn vectors, which were clustered via K -means and processed into a Vector of Locally Aggregated Descriptors (VLAD) representation to train a softmax classifier with the gradient boosting algorithm. This method achieved 90.9% accuracy on the classification of a 4-class dataset and 84.5% accuracy on a more complex 8-class dataset. The developed model established a framework to automatically detect and classify complex carbon nanostructures with potential applications that extend to the automated structural classification for other nanomaterials. 
    more » « less
  4. Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual annotations to effectively learn high-level spatial features from ion images and classify them based on molecular colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological research. 
    more » « less
  5. null (Ed.)
    Wireless device classification techniques play a vital role in supporting spectrum awareness applications, such as spectrum access policy enforcement and unauthorized network access monitoring. Recent works proposed to exploit distortions in the transmitted signals caused by hardware impairments of the devices to provide device identification and classification using deep learning. As technology advances, the manufacturing impairment variations among devices become extremely insignificant, and hence the need for more sophisticated device classification techniques becomes inescapable. This paper proposes a scalable, RF data-driven deep learning-based device classification technique that efficiently classifies transmitting radios from a large pool of bit-similar, high-end, high-performance devices with same hardware, protocol, and/or software configurations. Unlike existing techniques, the novelty of the proposed approach lies in exploiting both the in-band and out-of-band distortion information, caused by inherent hardware impairments, to enable scalable and accurate device classification. Using convolutional neural network (CNN) model for classification, our results show that the proposed technique substantially outperforms conventional approaches in terms of both classification accuracy and learning times. In our experiments, the testing accuracy obtained under the proposed technique is about 96% whereas that obtained under the conventional approach is only about 50% when the devices exhibit very similar hardware impairments. The proposed technique can be implemented with minimum receiver design tuning, as radio technologies, such as cognitive radios, can easily allow for both in-band and out-of band sampling. 
    more » « less