Bdellovibrio bacteriovorus is a predatory bacterium preying upon Gram-negative bacteria. As such, B. bacteriovorus has the potential to control antibiotic-resistant pathogens and biofilm populations. To survive and reproduce, B. bacteriovorus must locate and infect a host cell. However, in the temporary absence of prey, it is largely unknown how B. bacteriovorus modulate their motility patterns in response to physical or chemical environmental cues to optimize their energy expenditure. To investigate B. bacteriovorus’ predation strategy, we track and quantify their motion by measuring speed distributions as a function of starvation time. While an initial unimodal speed distribution relaxing to one for pure diffusion at long times may be expected, instead we observe a bimodal speed distribution with one mode centered around that expected from diffusion and the other centered at higher speeds. What is more, for an increasing amount of time over which B. bacteriovorus is starved, we observe a progressive reweighting from the active swimming state to an apparent diffusive state in the speed distribution. Distributions of trajectory-averaged speeds for B. bacteriovorus are largely unimodal, indicating switching between a faster swim speed and an apparent diffusive state within individual observed trajectories rather than there being distinct active swimming and apparent diffusive populations. We also find that B. bacteriovorus’ apparent diffusive state is not merely caused by the diffusion of inviable bacteria as subsequent spiking experiments show that bacteria can be resuscitated and bimodality restored. Indeed, starved B. bacteriovorus may modulate the frequency and duration of active swimming as a means of balancing energy consumption and procurement. Our results thus point to a reweighting of the swimming frequency on a trajectory basis rather than a population level basis. 
                        more » 
                        « less   
                    
                            
                            Parallel Evolution in Predatory Bdellovibrio sp. NC01 during Long-Term Coculture with a Single Prey Strain
                        
                    
    
            ABSTRACT Experimental evolution provides a powerful tool for examining how Bdellovibrio evolves in response to unique selective pressures associated with its predatory lifestyle. We tested how Bdellovibrio sp. NC01 adapts to long-term coculture with Pseudomonas sp. NC02, which is less susceptible to predation compared to other Gram-negative bacteria. Analyzing six replicate Bdellovibrio populations across six time points spanning 40 passages and 2,880 h of coculture, we detected 30 to 40 new mutations in each population that exceeded a frequency of 5%. Nonsynonymous substitutions were the most abundant type of new mutation, followed by small indels and synonymous substitutions. After completing the final passage, we detected 20 high-frequency (>75%) mutations across all six evolved Bdellovibrio populations. Eighteen of these alter protein sequences, and most increased in frequency rapidly. Four genes acquired a high-frequency mutation in two or more evolved Bdellovibrio populations, reflecting parallel evolution and positive selection. The genes encode a sodium/phosphate cotransporter family protein (Bd2221), a metallophosphoesterase (Bd0054), a TonB family protein (Bd0396), and a hypothetical protein (Bd1601). Tested prey range and predation efficiency phenotypes did not differ significantly between evolved Bdellovibrio populations and the ancestor; however, all six evolved Bdellovibrio populations demonstrated enhanced starvation survival compared to the ancestor. These results suggest that, instead of evolving improved killing of Pseudomonas sp. NC02, Bdellovibrio evolved to better withstand nutrient limitation in the presence of this prey strain. The mutations identified here point to genes and functions that may be important for Bdellovibrio adaptation to the different selective pressures of long-term coculture with Pseudomonas . IMPORTANCE Bdellovibrio attack and kill Gram-negative bacteria, including drug-resistant pathogens of animals and plants. This lifestyle is unusual among bacteria, and it imposes unique selective pressures on Bdellovibrio . Determining how Bdellovibrio evolve in response to these pressures is valuable for understanding the mechanisms that govern predation. We applied experimental evolution to test how Bdellovibrio sp. NC01 evolved in response to long-term coculture with a single Pseudomonas strain, which NC01 can kill, but with low efficiency. Our experimental design imposed different selective pressures on the predatory bacteria and tracked the evolutionary trajectories of replicate Bdellovibrio populations. Using genome sequencing, we identified Bdellovibrio genes that acquired high-frequency mutations in two or more populations. Using phenotype assays, we determined that evolved Bdellovibrio populations did not improve their ability to kill Pseudomonas , but rather are better able to survive starvation. Overall, our results point to functions that may be important for Bdellovibrio adaptation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655221
- PAR ID:
- 10437628
- Editor(s):
- Villanueva, Laura
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 89
- Issue:
- 1
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hendrickson, Heather (Ed.)Abstract Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.more » « less
- 
            ABSTRACT Predation can alter diverse ecological processes, including host–parasite interactions. Selective predation, whereby predators preferentially feed on certain prey types, can affect prey density and selective pressures. Studies on selective predation in infected populations have primarily focused on predators preferentially feeding on infected prey. However, there is substantial evidence that some predators preferentially consume uninfected individuals. Such different strategies of prey selectivity likely modulate host–parasite interactions, changing the fitness payoffs both for hosts and their parasites. Here we investigated the effects of different types of selective predation on infection dynamics and host evolution. We used a host–parasite system in the laboratory (Daphnia dentifera infected with the horizontally transmitted fungus,Metschnikowia bicuspidata) to artificially manipulate selective predation by removing infected, uninfected, or randomly selected prey over approximately 8–9 overlapping generations. We collected weekly data on population demographics and host infection and measured susceptibility from a subset of the remaining hosts in each population at the end of the experiment. After 6 weeks of selective predation pressure, we found no differences in host abundance or infection prevalence across predation treatments. Counterintuitively, populations with selective predation on infected individuals had a higher abundance of infected individuals than populations where either uninfected or randomly selected individuals were removed. Additionally, populations with selective predation for uninfected individuals had a higher proportion of individuals infected after a standardized exposure to the parasite than individuals from the two other predation treatments. These results suggest that selective predation can alter the abundance of infected hosts and host evolution.more » « less
- 
            Humans cause widespread evolutionary change in nature, but we still know little about the genomic basis of rapid adaptation in the Anthropocene. We tracked genomic changes across all protein-coding genes in experimental fish populations that evolved pronounced shifts in growth rates due to size-selective harvest over only four generations. Comparisons of replicate lines show parallel allele frequency shifts that recapitulate responses to size-selection gradients in the wild across hundreds of unlinked variants concentrated in growth-related genes. However, a supercluster of genes also rose rapidly in frequency and dominated the evolutionary dynamic in one replicate line but not in others. Parallel phenotypic changes thus masked highly divergent genomic responses to selection, illustrating how contingent rapid adaptation can be in the face of strong human-induced selection.more » « less
- 
            Brun, Yves V. (Ed.)ABSTRACT Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. In this study, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last time point. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest that larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells. IMPORTANCE Bacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. In this study, we revived and analyzed samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this “frozen fossil record,” we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    