skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel carbon skeletons activate human NicotinAMide Phosphoribosyl Transferase (NAMPT) enzyme in biochemical assay
Nicotinamide adenine dinucleotide (NAD) is a central molecule in cellular metabolism that has been implicated in human health, the aging process, and an array of human diseases. NAD is well known as an electron storage molecule, cycling between NAD and the reduced NADH. In addition, NAD is cleaved into nicotinamide and Adenine diphosphate ribose by NAD-consuming enzymes such as sirtuins, PARPs and CD38. There are numerous pathways for the biosynthesis of NAD to maintain a baseline concentration and thus avoid cellular death. The NAD salvage pathway, a two-step process to regenerate NAD after cleavage, is the predominant pathway for humans. Nicotinamide PhosphribosylTransferase (NAMPT) is the rate-limiting enzyme within the salvage path. Exposure to pharmacological modulators of NAMPT has been reported to either deplete or increase NAD levels. This study used a curated set of virtual compounds coupled with biochemical assays to identify novel activators of NAMPT. Autodock Vina generated a ranking of the National Cancer Institute’s Diversity Set III molecular library. The library contains a set of organic molecules with diverse functional groups and carbon skeletons that can be used to identify lead compounds. The target NAMPT surface encompassed a novel binding location that included the NAMPT dimerization plane, the openings to the two active site channels, and a portion of the known binding location for NAMPT substrate and product. Ranked molecules were evaluated in a biochemical assay using purified recombinant NAMPT enzyme. Two novel carbon skeletons were confirmed to stimulate NAMPT activity. Compound 20 (NSC9037) is a polyphenolic xanthene derivative in the fluorescein family, while compound 2 (NSC19803) is the polyphenolic myricitrin nature product. Micromolar quantities of compound 20 or compound 2 can double NAMPT’s product formation. In addition, natural products that contain high concentrations of polyphenolic flavonoids, similar to myricitrin, also stimulate NAMPT activity. Confirmation of a novel binding site for these compounds will further our understanding of the cellular mechanism leading to NAD homeostasis and better human health outcomes.  more » « less
Award ID(s):
1655221
PAR ID:
10437648
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Sun, Qiu
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0283428
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human mesenchymal stem cells (hMSCs) promote endogenous tissue regeneration and have become a promising candidate for cell therapy. However, in vitro culture expansion of hMSCs induces a rapid decline of stem cell properties through replicative senescence. Here, we characterize metabolic profiles of hMSCs during expansion. We show that alterations of cellular nicotinamide adenine dinucleotide (NAD + /NADH) redox balance and activity of the Sirtuin (Sirt) family enzymes regulate cellular senescence of hMSCs. Treatment with NAD + precursor nicotinamide increases the intracellular NAD + level and re-balances the NAD + /NADH ratio, with enhanced Sirt-1 activity in hMSCs at high passage, partially restores mitochondrial fitness and rejuvenates senescent hMSCs. By contrast, human fibroblasts exhibit limited senescence as their cellular NAD + /NADH balance is comparatively stable during expansion. These results indicate a potential metabolic and redox connection to replicative senescence in adult stem cells and identify NAD + as a metabolic regulator that distinguishes stem cells from mature cells. This study also suggests potential strategies to maintain cellular homeostasis of hMSCs in clinical applications. 
    more » « less
  2. null (Ed.)
    : Nicotinamide adenine dinucleotide (NAD + ) is a key player in many metabolic pathways as an activated carrier of electrons. In addition to being the cofactor for redox reactions, NAD + also serves as the substrate for various enzymatic transformations such as adenylation and ADP-ribosylation. Maintaining cellular NAD + homeostasis has been suggested as an effective anti-aging strategy. Given the importance of NAD + in regulating a broad spectrum of cellular events, small molecules targeting NAD + metabolism have been pursued as therapeutic interventions for the treatment of mitochondrial disorders and age-related diseases. In this article, small molecule regulators of NAD + biosynthetic enzymes will be reviewed. The focus will be given to the discovery and development of these molecules, the mechanism of action as well as their therapeutic potentials. 
    more » « less
  3. While the COVID-19 pandemic continues to worsen, effective medicines that target the life cycle of SARS-CoV-2 are still under development. As more highly infective and dangerous variants of the coronavirus emerge, the protective power of vaccines will decrease or vanish. Thus, the development of drugs, which are free of drug resistance is direly needed. The aim of this study is to identify allosteric binding modulators from a large compound library to inhibit the binding between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 2 (hACE2). The binding of the Spike protein to hACE2 is the first step of the infection of host cells by the coronavirus. We first built a compound library containing 77 448 antiviral compounds. Molecular docking was then conducted to preliminarily screen compounds which can potently bind to the Spike protein at two allosteric binding sites. Next, molecular dynamics simulations were performed to accurately calculate the binding affinity between the spike protein and an identified compound from docking screening and to investigate whether the compound can interfere with the binding between the Spike protein and hACE2. We successfully identified two possible drug binding sites on the Spike protein and discovered a series of antiviral compounds which can weaken the interaction between the Spike protein and hACE2 receptor through conformational changes of the key Spike residues at the Spike–hACE2 binding interface induced by the binding of the ligand at the allosteric binding site. We also applied our screening protocol to another compound library which consists of 3407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike–ACE2 binding. Thus, we developed a promising computational protocol to discover allosteric inhibitors of the binding of the Spike protein of SARS-CoV-2 to the hACE2 receptor, and several promising allosteric modulators were discovered. 
    more » « less
  4. Abstract During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin–Benson–Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H). Using Arabidopsis (Arabidopsis thaliana) as a C3-model, we describe a pathway that employs the stromal enzyme PHOSPHOGLYCERATE DEHYDROGENASE 3 (PGDH3). We showed that PGDH3 exerts high NAD(H)-specificity and is active in photosynthesizing chloroplasts. PGDH3 withdrew its substrate 3-PGA directly from the CBBC. As a result, electrons become diverted from NADPH via the CBBC into the separate NADH redox pool. pgdh3 loss-of-function mutants revealed an overreduced NADP(H) redox pool but a more oxidized plastid NAD(H) pool compared to wild-type plants. As a result, photosystem I acceptor side limitation increased in pgdh3. Furthermore, pgdh3 plants displayed delayed CBBC activation, changes in nonphotochemical quenching, and altered proton motive force partitioning. Our fluctuating light-stress phenotyping data showed progressing photosystem II damage in pgdh3 mutants, emphasizing the significance of PGDH3 for plant performance under natural light environments. In summary, this study reveals an NAD(H)-specific mechanism in the stroma that aids in balancing the chloroplast redox poise. Consequently, the stromal NAD(H) pool may provide a promising target to manipulate plant photosynthesis. 
    more » « less
  5. Abstract Benzaldehyde, the simplest aromatic aldehyde, is one of the most wide-spread volatiles that serves as a pollinator attractant, flavor, and antifungal compound. However, the enzyme responsible for its formation in plants remains unknown. Using a combination of in vivo stable isotope labeling, classical biochemical, proteomics and genetic approaches, we show that in petunia benzaldehyde is synthesized via the β-oxidative pathway in peroxisomes by a heterodimeric enzyme consisting of α and β subunits, which belong to the NAD(P)-binding Rossmann-fold superfamily. Both subunits are alone catalytically inactive but, when mixed in equal amounts, form an active enzyme, which exhibits strict substrate specificity towards benzoyl-CoA and uses NADPH as a cofactor. Alpha subunits can form functional heterodimers with phylogenetically distant β subunits, but not all β subunits partner with α subunits, at least in Arabidopsis. Analysis of spatial, developmental and rhythmic expression of genes encoding α and β subunits revealed that expression of the gene for the α subunit likely plays a key role in regulating benzaldehyde biosynthesis. 
    more » « less