skip to main content


This content will become publicly available on May 8, 2024

Title: Improving Inter-Helix Contact Prediction With Local 2D Topological Information
Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.  more » « less
Award ID(s):
1820103
NSF-PAR ID:
10437655
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN:
1545-5963
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Accurate prediction of protein secondary structure (alpha‐helix, beta‐strand and coil) is a crucial step for protein inter‐residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network‐based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one‐dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3‐state and 8‐state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state‐of‐art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at:https://github.com/multicom-toolbox/DNSS2.

     
    more » « less
  2. null (Ed.)
    Abstract Motivation Protein model quality estimation, in many ways, informs protein structure prediction. Despite their tight coupling, existing model quality estimation methods do not leverage inter-residue distance information or the latest technological breakthrough in deep learning that has recently revolutionized protein structure prediction. Results We present a new distance-based single-model quality estimation method called QDeep by harnessing the power of stacked deep residual neural networks (ResNets). Our method first employs stacked deep ResNets to perform residue-level ensemble error classifications at multiple predefined error thresholds, and then combines the predictions from the individual error classifiers for estimating the quality of a protein structural model. Experimental results show that our method consistently outperforms existing state-of-the-art methods including ProQ2, ProQ3, ProQ3D, ProQ4, 3DCNN, MESHI, and VoroMQA in multiple independent test datasets across a wide-range of accuracy measures; and that predicted distance information significantly contributes to the improved performance of QDeep. Availability and implementation https://github.com/Bhattacharya-Lab/QDeep. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM. 
    more » « less
  4. Abstract Background Estimation of the accuracy (quality) of protein structural models is important for both prediction and use of protein structural models. Deep learning methods have been used to integrate protein structure features to predict the quality of protein models. Inter-residue distances are key information for predicting protein’s tertiary structures and therefore have good potentials to predict the quality of protein structural models. However, few methods have been developed to fully take advantage of predicted inter-residue distance maps to estimate the accuracy of a single protein structural model. Result We developed an attentive 2D convolutional neural network (CNN) with channel-wise attention to take only a raw difference map between the inter-residue distance map calculated from a single protein model and the distance map predicted from the protein sequence as input to predict the quality of the model. The network comprises multiple convolutional layers, batch normalization layers, dense layers, and Squeeze-and-Excitation blocks with attention to automatically extract features relevant to protein model quality from the raw input without using any expert-curated features. We evaluated DISTEMA’s capability of selecting the best models for CASP13 targets in terms of ranking loss of GDT-TS score. The ranking loss of DISTEMA is 0.079, lower than several state-of-the-art single-model quality assessment methods. Conclusion This work demonstrates that using raw inter-residue distance information with deep learning can predict the quality of protein structural models reasonably well. DISTEMA is freely at https://github.com/jianlin-cheng/DISTEMA 
    more » « less
  5. The information about the domain architecture of proteins is useful for studying protein structure and function. However, accurate prediction of protein domain boundaries (i.e., sequence regions separating two domains) from sequence remains a significant challenge. In this work, we develop a deep learning method based on multi-head U-Nets (called DistDom) to predict protein domain boundaries utilizing 1D sequence features and predicted 2D inter-residue distance map as input. The 1D features contain the evolutionary and physicochemical information of protein sequences, whereas the 2D distance map includes the structural information of proteins that was rarely used in domain boundary prediction before. The 1D and 2D features are processed by the 1D and 2D U-Nets respectively to generate hidden features. The hidden features are then used by the multi-head attention to predict the probability of each residue of a protein being in a domain boundary, leveraging both local and global information in the features. The residue-level domain boundary predictions can be used to classify proteins as single-domain or multi-domain proteins. It classifies the CASP14 single-domain and multi-domain targets at the accuracy of 75.9%, 13.28% more accurate than the state-of-the-art method. Tested on the CASP14 multi-domain protein targets with expert annotated domain boundaries, the average per-target F1 measure score of the domain boundary prediction by DistDom is 0.263, 29.56% higher than the state-of-the-art method. 
    more » « less