This study examines how a rural-serving school district aimed to provide elementary-level computer science (CS) by offering instruction during students’ computer lab time. As part of a research-practice partnership, cross-context mathematics and CS lessons were co-designed to expansively frame and highlight connections across – as opposed to integration within – the two subjects. Findings indicated that most students who engaged with the lessons across the lab and classroom contexts reported finding the lessons interesting, seeing connections to their mathematics classes, and understanding the programming. In contrast, a three-level logistic regression model showed that students who only learned about mathematics connections within the CS lessons (thus not in a cross-context way) reported statistically significant lower levels of interest, connections, and understanding.
more »
« less
Rethinking Integrated Computer Science Instruction: A Cross-Context and Expansive Approach in Elementary Classrooms
This study examines how a rural-serving school district aimed to provide elementarylevel computer science (CS) by offering instruction during students’ computer lab, a class taught by paraprofessional educators with limited background in computing. As part of a researchpractice partnership, cross-context mathematics and CS lessons were co-designed to expansively frame and highlight connections across – as opposed to integration within – the two subjects. Findings indicate that the paraprofessionals teaching the lessons generally reported positive experiences and understanding of content; however, those less comfortable with the content reported lower student interest. Further, most students who engaged with the lessons across the lab and classroom contexts reported finding the lessons interesting, seeing connections to their mathematics classes, and understanding the programming. In contrast, students who only learned about mathematics connections within the CS lessons (thus not in a cross-context way) reported significantly lower levels of interest, connections, and understanding.
more »
« less
- Award ID(s):
- 2031382
- PAR ID:
- 10437670
- Date Published:
- Journal Name:
- Conference of the American Educational Research Association Conference. Chicago, IL
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study examines how a rural-serving school district aimed to provide elementary level computer science (CS) by offering instruction during students’ computer lab time. As part of a research-practice partnership, cross-context mathematics and CS lessons were co-designed to expansively frame and highlight connections across – as opposed to integration within – the two subjects. Findings indicated that most students who engaged with the lessons across the lab and classroom contexts reported finding the lessons interesting, seeing connections to their mathematics classes, and understanding the programming. In contrast, a three-level logistic regression model showed that students who only learned about mathematics connections within the CS lessons (thus not in a cross-context way) reported statistically significant lower levels of interest, connections, and understandingmore » « less
-
In the United States, school curricula are often created and taught with distinct boundaries between disciplines. This division between curricular areas may serve as a hindrance to students’ long-term learning and their ability to generalize. In contrast, cross-curricular pedagogy provides a way for students to think beyond the classroom walls and make important connections across disciplines. The purpose of this paper is a theoretical reflection on our use of Expansive Framing in our design of lessons across learning environments within the school. We provide a narrative account of our early work in using this theoretical framework to co-plan and enact interdisciplinary mathematics and computer science (CS) tasks with a team of elementary school educators and school district personnel. The unit focuses on the concepts of exponents in mathematics and repeat loops as a control structure in computer science. Using a narrative approach, we describe what occurred during the collaborative planning of lessons and subsequent enactments in two fifth-grade classrooms and one computer lab and provide a practitioner‑oriented account of our experience.more » « less
-
Expansive Framing (EF) is a theory and an instructional technique to facilitate connections between content and contexts. We employed EF as an approach to create a series of integrated mathematics and computer science (CS) lessons, using digital technology as a tool to leverage shared mathematical and computational ideas. We used deductive theoretical qualitative analysis of transcripts of classroom implementations to investigate how two fifth-grade teachers and one computer lab paraprofessional educator used EF during their teaching and what the EF approach looked like in practice. Findings suggested that educators engaged in EF principles when they were present in curricular materials, yet they also made additional impromptu (albeit school-based) expansive connections. The teachers in the study also regularly framed students as authors and owners of new knowledge. We recommend that mathematics-CS integrated curricular materials include language and other supports that make unambiguous, specific connections across learning contexts. We posit that EF theory can be a support to educators in the integration of mathematics and coding instruction with digital technology.more » « less
-
This paper presents a model, the double integration model, for integrating Computer Science (CS) and mathematics in upper elementary instruction. Fifth-grade students (n=1,037) participated either in the double integrated model (Condition 1; integrated in both CS and Math instruction) or integrated lessons only in CS instruction (Condition 2). After each lesson, students rated their enjoyment, perceived ease, and perceptions of CS-math connections. Multilevel analyses revealed that Condition 1 students reported significantly more positive perceptions and stronger CS-math connections of the lessons than Condition 2 students. Girls in Condition 1 responded more positively than boys on enjoyment and connection items, and outperformed Condition 2 girls across all measures. These findings underscore the double integration model's effectiveness.more » « less
An official website of the United States government

