skip to main content


Title: Trans- species microRNA loci in the parasitic plant Cuscuta campestris have a U6-like snRNA promoter
Abstract Small regulatory RNAs can move between organisms and regulate gene expression in the recipient. Whether the trans-species small RNAs being exported are distinguished from the normal endogenous small RNAs of the source organism is not known. The parasitic plant Cuscuta campestris (dodder) produces many microRNAs that specifically accumulate at the host–parasite interface, several of which have trans-species activity. We found that induction of C. campestris interface-induced microRNAs is similar regardless of host species and occurs in C. campestris haustoria produced in the absence of any host. The loci-encoding C. campestris interface-induced microRNAs are distinguished by a common cis-regulatory element. This element is identical to a conserved upstream sequence element (USE) used by plant small nuclear RNA loci. The properties of the interface-induced microRNA primary transcripts strongly suggest that they are produced via U6-like transcription by RNA polymerase III. The USE promotes accumulation of interface-induced miRNAs (IIMs) in a heterologous system. This promoter element distinguishes C. campestris IIM loci from other plant small RNAs. Our data suggest that C. campestris IIMs are produced in a manner distinct from canonical miRNAs. All confirmed C. campestris microRNAs with documented trans-species activity are interface-induced and possess these features. We speculate that RNA polymerase III transcription of IIMs may allow these miRNAs to be exported to hosts.  more » « less
Award ID(s):
2003315
NSF-PAR ID:
10437679
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Plant Cell
Volume:
35
Issue:
6
ISSN:
1040-4651
Page Range / eLocation ID:
1834 to 1847
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Endogenously-encoded microRNAs (miRNAs) are a class of small regulatory RNAs that modulate gene expression at the post-transcriptional level. In plants, miRNAs have increasingly been identified by experiments based on next-generation sequencing (NGS). However, promoter organization is currently unknown for most plant miRNAs, which are transcribed by RNA polymerase II. This deficiency prevents a comprehensive understanding of miRNA-mediated gene networks. In this study, by analyzing full-length cDNA sequences related to miRNAs, we mapped transcription start sites (TSSs) for 62 and 55 miRNAs in Arabidopsis and rice, respectively. The average free energy (AFE) profiles in the vicinity of TSSs were studied for both species. By employing position weight matrices (PWM) for 99 plant cis-elements, we discovered that three cis-elements were over-represented in the miRNA promoters of both species, while four and ten cis-elements were over-represented in Arabidopsis only and in rice only. Thus, comparison of miRNA promoters between Arabidopsis and rice provides a new perspective for studying miRNA regulation in plants.

     
    more » « less
  2. Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed. 
    more » « less
  3. Abstract

    The role of gene expression in adaptation to differing thermal environments has been assayed extensively. Yet, in most natural systems, analyses of gene expression reveal only one level of the complexity of regulatory machineries. MicroRNAs (miRNAs) are small noncoding RNAs which are key components of many gene regulatory networks, and they play important roles in a variety of cellular pathways by modulating post‐transcriptional quantities of mRNA available for protein synthesis. The characterization of miRNA loci and their regulatory dynamics in nonmodel systems are still largely understudied. In this study, we examine the role of miRNAs in response to high thermal stress in the intertidal copepodTigriopus californicus.Allopatric populations of this species show varying levels of local adaptation with respect to thermal regimes, and previous studies showed divergence in gene expression between populations from very different thermal environments. We examined the transcriptional response to temperature stress in two populations separated by only 8 km by utilizing RNA‐seq to quantify both mRNA and miRNA levels. Using the currently available genome sequence, we first describe the repertoire of miRNAs inT. californicusand assess the degree to which transcriptional response to temperature stress is governed by miRNA activity. The two populations showed large differences in the number of genes involved, the magnitude of change in commonly used genes and in the number of miRNAs involved in transcriptional modulation during stress. Our results suggest that an increased level of regulatory network complexity may underlie improved survivorship under thermal stress in one of the populations.

     
    more » « less
  4. Abstract The Solanaceae or “nightshade” family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family’s small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data. We applied a suite of computational tools to predict and annotate two major sRNA classes: (1) microRNAs (miRNAs), typically 20- to 22-nucleotide (nt) RNAs generated from a hairpin precursor and functioning in gene silencing and (2) short interfering RNAs (siRNAs), including 24-nt heterochromatic siRNAs typically functioning to repress repetitive regions of the genome via RNA-directed DNA methylation, as well as secondary phased siRNAs and trans-acting siRNAs generated via miRNA-directed cleavage of a polymerase II-derived RNA precursor. Our analyses described thousands of sRNA loci, including poorly understood clusters of 22-nt siRNAs that accumulate during viral infection. The birth, death, expansion, and contraction of these sRNA loci are dynamic evolutionary processes that characterize the Solanaceae family. These analyses indicate that individuals within the same genus share similar sRNA landscapes, whereas comparisons between distinct genera within the Solanaceae reveal relatively few commonalities. 
    more » « less
  5. SUMMARY

    The anther‐enriched phased, small interfering RNAs (phasiRNAs) play vital roles in sustaining male fertility in grass species. Their long non‐coding precursors are synthesized by RNA polymerase II and are likely regulated by transcription factors (TFs). A few putative transcriptional regulators of the 21‐ or 24‐nucleotide phasiRNA loci (referred to as21‐or24‐PHASloci) have been identified in maize (Zea mays), but whether any of the individual TFs or TF combinations suffice to activate anyPHASlocus is unclear. Here, we identified the temporal gene coexpression networks (modules) associated with maize anther development, including two modules highly enriched for the21‐or24‐PHASloci. Comparisons of these coexpression modules and gene sets dysregulated in several reported male sterile TF mutants provided insights into TF timing with regard to phasiRNA biogenesis, including antagonistic roles for OUTER CELL LAYER4 and MALE STERILE23.Trans‐activation assays in maize protoplasts of individual TFs using bulk‐protoplast RNA‐sequencing showed that two of the TFs coexpressed with21‐PHASloci could activate several 21‐nucleotide phasiRNA pathway genes but not transcription of21‐PHASloci. Screens for combinatorial activities of these TFs and, separately, the recently reported putative transcriptional regulators of24‐PHASloci using single‐cell (protoplast) RNA‐sequencing, did not detect reproducible activation of either21‐PHASor24‐PHASloci. Collectively, our results suggest that the endogenous transcriptional machineries and/or chromatin states in the anthers are necessary to activate reproductivePHASloci.

     
    more » « less