skip to main content


Title: Traveling Bazaar: Portable Support for Face-to-Face Collaboration
For nearly two decades, conversational agents have been used to structure group interactions in online chat-based environments. More recently, this form of dynamic support for collaborative learning has been extended to physical spaces using a combination of multimodal sensing technologies and instrumentation installed within a physical space. This demo extends the reach of dynamic support for collaboration still further through an application of what has recently been termed on-device machine learning, which enables a portable form of multimodal detection to trigger real-time responses.  more » « less
Award ID(s):
2100401
NSF-PAR ID:
10437737
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Collaboration toward Educational Innovation for All: International Society of the Learning Sciences (ISLS) Annual Meeting 2023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding abstract concepts in mathematics has continuously presented as a challenge, but the use of directed and spontaneous gestures has shown to support learning and ground higher-order thought. Within embodied learning, gesture has been investigated as part of a multimodal assemblage with speech and movement, centering the body in interaction with the environment. We present a case study of one dyad’s undertaking of a robotic arm activity, targeting learning outcomes in matrix algebra, robotics, and spatial thinking. Through a body syntonicity lens and drawing on video and pre- and post- assessment data, we evaluate learning gains and investigate the multimodal processes contributing to them. We found gesture, speech, and body movement grounded understanding of vector and matrix operations, spatial reasoning, and robotics, as anchored by the physical robotic arm, with implications for the design of learning environments that employ directed gestures. 
    more » « less
  2. Our study is motivated by robotics, where when dealing with robots or other physical systems, we often need to balance competing concerns of relying on complex, multimodal data coming from a variety of sensors with a general lack of large representative datasets. Despite the complexity of modern robotic platforms and the need for multimodal interaction, there has been little research on integrating more than two modalities in a low data regime with the real-world constraint that sensors fail due to obstructions or adverse conditions. In this work, we consider a case in which natural language is used as a retrieval query against objects, represented across multiple modalities, in a physical environment. We introduce extended multimodal alignment (EMMA), a method that learns to select the appropriate object while jointly refining modality-specific embeddings through a geometric (distance-based) loss. In contrast to prior work, our approach is able to incorporate an arbitrary number of views (modalities) of a particular piece of data. We demonstrate the efficacy of our model on a grounded language object retrieval scenario. We show that our model outperforms state-of-the-art baselines when little training data is available. Our code is available at https://github.com/kasraprime/EMMA 
    more » « less
  3. Abstract

    Multimodal data arise in various applications where information about the same phenomenon is acquired from multiple sensors and across different imaging modalities. Learning from multimodal data is of great interest in machine learning and statistics research as this offers the possibility of capturing complementary information among modalities. Multimodal modeling helps to explain the interdependence between heterogeneous data sources, discovers new insights that may not be available from a single modality, and improves decision‐making. Recently, coupled matrix–tensor factorization has been introduced for multimodal data fusion to jointly estimate latent factors and identify complex interdependence among the latent factors. However, most of the prior work on coupled matrix–tensor factors focuses on unsupervised learning and there is little work on supervised learning using the jointly estimated latent factors. This paper considers the multimodal tensor data classification problem. A coupled support tensor machine (C‐STM) built upon the latent factors jointly estimated from the advanced coupled matrix–tensor factorization is proposed. C‐STM combines individual and shared latent factors with multiple kernels and estimates a maximal‐margin classifier for coupled matrix–tensor data. The classification risk of C‐STM is shown to converge to the optimal Bayes risk, making it a statistically consistent rule. C‐STM is validated through simulation studies as well as a simultaneous analysis on electroencephalography with functional magnetic resonance imaging data. The empirical evidence shows that C‐STM can utilize information from multiple sources and provide a better classification performance than traditional single‐mode classifiers.

     
    more » « less
  4. Numerous computer-based collaborative learning environments have been developed to support collaborative problem-solving. Yet, understanding the complexity and dynamic nature of the collaboration process remains a challenge. This is particularly true in open-ended immersive learning environments, where students navigate both physical and virtual spaces, pursuing diverse paths to solve problems. In response, we aimed to unpack these complex collaborative learning processes by investigating 16 groups of college students (n = 77) who utilized an immersive astronomy simulation in their introductory astronomy course. Our specific focus is on joint attention as a multi-level indicator to index collaboration. To examine the interplay between joint attention and other multimodal traces (conceptual discussions and gestures) in students’ interactions with peers and the simulation, we employed a multi-granular approach. This approach encompasses macro-level correlations, meso-level network trends, and micro-level qualitative insights from vignettes to capture nuances at different levels. Distinct multimodal engagement patterns emerged between low- and high-achieving groups, evolving over time across a series of tasks. Our findings contribute to the understanding of the notion of timely joint attention and emphasize the importance of individual exploration during the early stages of collaborative problem-solving, demonstrating its contribution to productive knowledge coconstruction. This research overall provides valuable insights into the complexities of collaboration dynamics within and beyond digital space. The empirical evidence we present in our study lays a strong foundation for developing instructional designs aimed at fostering productive collaboration in immersive learning environments. 
    more » « less
  5. null (Ed.)
    Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that causes severe problems in patients’ thinking, memory, and behavior. An early diagnosis is crucial to prevent AD progression; to this end, many algorithmic approaches have recently been proposed to predict cognitive decline. However, these predictive models often fail to integrate heterogeneous genetic and neuroimaging biomarkers and struggle to handle missing data. In this work we propose a novel objective function and an associated optimization algorithm to identify cognitive decline related to AD. Our approach is designed to incorporate dynamic neuroimaging data by way of a participant-specific augmentation combined with multimodal data integration aligned via a regression task. Our approach, in order to incorporate additional side-information, utilizes structured regularization techniques popularized in recent AD literature. Armed with the fixed-length vector representation learned from the multimodal dynamic and static modalities, conventional machine learning methods can be used to predict the clinical outcomes associated with AD. Our experimental results show that the proposed augmentation model improves the prediction performance on cognitive assessment scores for a collection of popular machine learning algorithms. The results of our approach are interpreted to validate existing genetic and neuroimaging biomarkers that have been shown to be predictive of cognitive decline. 
    more » « less