A past global synthesis of marine particulate organic matter (POM) suggested latitudinal variation in the ratio of surface carbon (C): nitrogen (N): phosphorus (P). However, this synthesis relied on compiled datasets that may have biased the observed pattern. To demonstrate latitudinal shifts in surface C:N:P, we combined hydrographic and POM observations from 28°N to 69°S in the eastern Pacific Ocean (GO‐SHIP line P18). Both POM concentrations and ratios displayed distinct biome‐associated changes. Surface POM concentrations were relatively low in the North Pacific subtropical gyre, increased through the Equatorial Pacific, were lowest in the South Pacific subtropical gyre, and increased through the Southern Ocean. Stoichiometric elemental ratios were systematically above Redfield proportions in warmer regions. However, C:P and N:P gradually decreased across the Southern Ocean despite an abundance of macro‐nutrients. Here, a size‐fraction analysis of POM linked increases in the proportion of large plankton to declining ratios. Subsurface N* values support the hypothesis that accumulated remineralization products of low C:P and N:P exported POM helps maintain the Redfield Ratio of deep nutrients. We finally evaluated stoichiometric models against observations to assess predictive accuracy. We attributed the failure of all models to their inability to capture shifts in the specific nature of nutrient limitation. Our results point to more complex linkages between multinutrient limitation and cellular resource allocation than currently parameterized in models. These results suggest a greater importance of understanding the interaction between the type of nutrient limitation and plankton diversity for predicting the global variation in surface C:N:P.
- Award ID(s):
- 2048373
- NSF-PAR ID:
- 10437785
- Date Published:
- Journal Name:
- Nature Geoscience
- Volume:
- 15
- Issue:
- 12
- ISSN:
- 1752-0894
- Page Range / eLocation ID:
- 1034 to 1040
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in marine ecosystems is variable through space and time, with no clear consensus on the controls on variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. We find latitudinal variability in C:N:P stoichiometry, with surface temperature and macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic observations indicated community nutrient stress and suggested that nutrient supply rate and nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest systematic regulation of elemental stoichiometry among ocean ecosystems, but that future changes remain highly uncertain.
-
Abstract Phytoplankton stoichiometry modulates the interaction between carbon, nitrogen and phosphorus cycles. Environmentally driven variations in phytoplankton C:N:P can alter biogeochemical cycling compared to expectations under fixed ratios. In fact, the assumption of fixed C:N:P has been linked to Earth System Model (ESM) biases and potential misrepresentation of responses to future change. Here we integrate key elements of the Adaptive Trait Optimization Model (ATOM) for phytoplankton stoichiometry with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) ocean biogeochemical model. Within a series of global ocean‐ice‐ecosystem retrospective simulations, ATOM‐COBALT reproduced observations of phytoplankton N:P, and compared to static ratios, exhibited reduced phytoplankton P‐limitation, enhanced N‐fixation, and increased low‐latitude export, improving consistency with observations and highlighting the biogeochemical implications of dynamic N:P. We applied ATOM‐COBALT to explore the impacts of different physiological mechanisms hypothesized to underlie N:P variation, finding that two mechanisms together drove the observed patterns: proportionality of P‐rich ribosomes in phytoplankton cells to growth rates and reductions in P‐storage during scarcity. A third mechanism which linked temperature with phytoplankton biomass allocations to non‐ribosomal proteins, led only to relatively modest impacts because this mechanism decreased the temperature dependence of phytoplankton growth rates, compensating for changes in N:P. We find that there are quantitative response differences that associate distinctive biogeochemical footprints with each mechanism, which are most apparent in highly productive low‐latitude regions. These results suggest that variable phytoplankton N:P makes phytoplankton productivity and export resilient to environmental changes, and support further research on the physiological and environmental drivers of phytoplankton stoichiometry and biogeochemical role.
-
Abstract Concentrations and elemental ratios of suspended particulate organic matter influence many biogeochemical processes in the ocean, including patterns of phytoplankton nutrient limitation and links between carbon, nitrogen and phosphorus cycles. Here we present direct measurements of cellular nutrient content and stoichiometric ratios for discrete phytoplankton populations spanning broad environmental conditions across several ocean basins. Median cellular carbon-to-phosphorus and nitrogen-to-phosphorus ratios were positively correlated with vertical nitrate-to-phosphate flux for all phytoplankton groups and were consistently higher for cyanobacteria than eukaryotes. Light and temperature were inconsistent predictors of stoichiometric ratios. Across nutrient-rich and phosphorus-stressed biomes in the North Atlantic, but not in the nitrogen-stressed tropical North Pacific, we find that a combination of taxonomic composition and environmental acclimation best predict bulk particulate organic matter composition. Our findings demonstrate the central role of plankton biodiversity and plasticity in controlling linkages between ocean nutrient and carbon cycles in some regions.
-
Abstract The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular‐level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐phosphorus ratios (
R C :P ) on the distribution of export production. We implement a trait‐based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relatingR C :P to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R 2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changingR C :P to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.