The ability to predict student performance in introductory programming courses is important to help struggling students and enhance their persistence. However, for this prediction to be impactful, it is crucial that it remains transparent and accessible for both instructors and students, ensuring effective utilization of the predicted results. Machine learning models with explainable features provide an effective means for students and instructors to comprehend students' diverse programming behaviors and problem-solving strategies, elucidating the factors contributing to both successful and suboptimal performance. This study develops an explainable model that predicts student performance based on programming assignment submission information in different stages of the course to enable early explainable predictions. We extract data-driven features from student programming submissions and utilize a stacked ensemble model for predicting final exam grades. The experimental results suggest that our model successfully predicts student performance based on their programming submissions earlier in the semester. Employing SHAP, a game-theory-based framework, we explain the model's predictions, aiding stakeholders in understanding the influence of diverse programming behaviors on students' success. Additionally, we analyze crucial features, employing a mix of descriptive statistics and mixture models to identify distinct student profiles based on their problem-solving patterns, enhancing overall explainability. Furthermore, we dive deeper and analyze the profiles using different programming patterns of the students to elucidate the characteristics of different students where SHAP explanations are not comprehensible. Our explainable early prediction model elucidates common problem-solving patterns in students relative to their expertise, facilitating effective intervention and adaptive support.
more »
« less
Analysis of an Explainable Student Performance Prediction Model in an Introductory Programming Course
Prediction of student performance in Introductory programming courses can assist struggling students and improve their persistence. On the other hand, it is important for the prediction to be transparent for the instructor and students to effectively utilize the results of this prediction. Explainable Machine Learning models can effectively help students and instructors gain insights into students’ different programming behaviors and problem-solving strategies that can lead to good or poor performance. This study develops an explainable model that predicts students’ performance based on programming assignment submission information. We extract different data-driven features from students’ programming submissions and employ a stacked ensemble model to predict students’ final exam grades. We use SHAP, a game-theory-based framework, to explain the model’s predictions to help the stakeholders understand the impact of different programming behaviors on students’ success. Moreover, we analyze the impact of important features and utilize a combination of descriptive statistics and mixture models to identify different profiles of students based on their problem-solving patterns to bolster explainability. The experimental results suggest that our model significantly outperforms other Machine Learning models, including KNN, SVM, XGBoost, Bagging, Boosting, and Linear regression. Our explainable and transparent model can help explain students’ common problem-solving patterns in relationship with their level of expertise resulting in effective intervention and adaptive support to students.
more »
« less
- Award ID(s):
- 2213789
- PAR ID:
- 10437969
- Date Published:
- Journal Name:
- the 16th International Conference on Educational Data Mining (EDM 2023)
- Page Range / eLocation ID:
- 79-90
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ability to predict student performance in introductory programming courses is important to help struggling students and enhance their persistence. However, for this prediction to be impactful, it is crucial that it remains transparent and accessible for both instructors and students, ensuring effective utilization of the predicted results. Machine learning models with explainable features provide an effective means for students and instructors to comprehend students' diverse programming behaviors and problem-solving strategies, elucidating the factors contributing to both successful and suboptimal performance. This study develops an explainable model that predicts student performance based on programming assignment submission information in different stages of the course to enable early explainable predictions. We extract data-driven features from student programming submissions and utilize a stacked ensemble model for predicting final exam grades. The experimental results suggest that our model successfully predicts student performance based on their programming submissions earlier in the semester. Employing SHAP, a game-theory-based framework, we explain the model's predictions, aiding stakeholders in understanding the influence of diverse programming behaviors on students' success. Additionally, we analyze crucial features, employing a mix of descriptive statistics and mixture models to identify distinct student profiles based on their problem-solving patterns, enhancing overall explainability. Furthermore, we dive deeper and analyze the profiles using different programming patterns of the students to elucidate the characteristics of different students where SHAP explanations are not comprehensible. Our explainable early prediction model elucidates common problem-solving patterns in students relative to their expertise, facilitating effective intervention and adaptive support.more » « less
-
The ability to predict student performance in introductory programming courses is important to help struggling students and enhance their persistence. However, for this prediction to be impactful, it is crucial that it remains transparent and accessible for both instructors and students, ensuring effective utilization of the predicted results. Machine learning models with explainable features provide an effective means for students and instructors to comprehend students' diverse programming behaviors and problem-solving strategies, elucidating the factors contributing to both successful and suboptimal performance. This study develops an explainable model that predicts student performance based on programming assignment submission information in different stages of the course to enable early explainable predictions. We extract data-driven features from student programming submissions and utilize a stacked ensemble model for predicting final exam grades. The experimental results suggest that our model successfully predicts student performance based on their programming submissions earlier in the semester. Employing SHAP, a game-theory-based framework, we explain the model's predictions, aiding stakeholders in understanding the influence of diverse programming behaviors on students' success. Additionally, we analyze crucial features, employing a mix of descriptive statistics and mixture models to identify distinct student profiles based on their problem-solving patterns, enhancing overall explainability. Furthermore, we dive deeper and analyze the profiles using different programming patterns of the students to elucidate the characteristics of different students where SHAP explanations are not comprehensible. Our explainable early prediction model elucidates common problem-solving patterns in students relative to their expertise, facilitating effective intervention and adaptive support.more » « less
-
Pedagogical agents offer significant promise for engaging students in learning. In this paper, we investigate students’ conversational interactions with a pedagogical agent in a game-based learning environment for middle school sci- ence education. We utilize word embeddings of student-agent conversations along with features distilled from students’ in-game actions to induce predictive models of student engagement. An evaluation of the models’ accuracy and early prediction performance indicates that features derived from students’ conversa- tions with the pedagogical agent yield the highest accuracy for predicting student engagement. Results also show that combining student problem-solving features and conversation features yields higher performance than a problem solving-only feature set. Overall, the findings suggest that student-agent conversations can greatly enhance student models for game-based learning environments.more » « less
-
Jormanainen, Ilkka; Petersen, Andrew (Ed.)Students in introductory computer science courses often need individualized help when they get stuck solving programming problems. But providing such help can be time-consuming and thought-intensive, and therefore difficult to scale as Computer Science classes grow larger in size. Automatically generated fixes with explanations have the potential to integrate into a variety of mechanisms for providing help to students who are stuck on a programming problem. In this paper, we present a data-driven algorithm for generating explainable fixes to student code. We evaluate a Python implementation of the algorithm by comparing its output at different stages of the algorithm to state-of-the-art systems with similar goals. Our algorithm outperforms existing systems that can analyze and fix beginner-written Python code. Further, fixes it generates conform very well to corrections written by human experts for an existing benchmark of code correction quality.more » « less
An official website of the United States government

