Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐
Herein, deep learning (DL) is used to predict the structural parameters of Ag nanohole arrays (NAs) for spectrum‐driving and color‐driving plasmonic applications. A dataset of transmission spectra and structural parameters of NAs is generated using finite‐difference time‐domain (FDTD) calculations and is converted to vivid structural colors using the corresponding transmission spectrum. A bidirectional neural network is used to train the transmission spectrum and structural color together. The accuracy of predicting the structural parameters using a desired spectrum is tested and found to be up to 0.99, with a determination coefficient of reproducing the desired spectrum and color to be 0.97 and 0.96, respectively. These values are higher compared to those when only training for spectrum, but requiring less training time. This strategy is able to inverse design the NAs in less than 1 s to maximize surface‐enhanced Raman scattering (SERS) enhancement by matching transmission resonance and laser excitation wavelength, and accurately regenerate colored images in 7.5 s, allowing for nanoscale printing at a resolution of approximately 100 000 dots in−1. This work has important implications for the efficient design of nanostructures for various plasmonic applications, such as plasmonic sensors, optical filters, metal‐enhanced fluorescence, SERS, and super‐resolution displays.
more » « less- NSF-PAR ID:
- 10438029
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 5
- Issue:
- 10
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x )Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x )Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x )BCZT‐(x )BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x )BCZT‐(x )BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingx in the full range (x = 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x )BCZT‐(x )BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x )BCZT‐(x )BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 +P4mm ) phases at room temperature. The steady transition ofAmm2 crystal symmetry toP4mm crystal symmetry with increasingx content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingx content. For (1‐x )BCZT‐(x )BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantε r≈ 1900–3300 (near room temperature),ε r≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ ≈ 0.01–0.02, remanent polarizationP r≈ 9.4–14 µC cm−2, coercive electric fieldE c≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS ≈ 0.12–0.175%, piezoelectric charge coefficientd 33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientk p≈ 0.34–0.45, and electrostrictive coefficient (Q 33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x )BCZT‐(x )BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x )BCZT‐(x )BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies. -
Silver dendritic nanostructures (AgD) is investigated for surface-enhanced Raman scattering (SERS) with simulation and experiments, the simulations showed that there is a significant absorbance over a broad spectrum from the AgD, this indicated that AgD is a good candidate for SERS. The simulations helped to study the parameters of the AgD that affects the SERS and we applied these simulation results for experimental designs, in which our experimental results of synthesis and characterization results of Raman spectrum showed consistence with the simulation results. These simulation results are very helpful in deciding the experimental parameters for efficient and effective synthesizing and reproduction of hierarchical silver dendritic nanostructure. The AgD were produced using displacement redox reaction between AgNO 3 solution and Copper foil. We found that the concentration of AgNO 3 played major role on the rate of reaction, and the rapid growth of the silver nanostructures was observed as the reaction time increases. The structural and morphological evolution of silver dendrites was examined with Scanning Electron Microscope (SEM). The Raman enhancement of AgDs was evaluated using Elman's reagent (DTNB) and Rhodamine 6G (R6G). The silver dendrites have great potential for diverse sensing applications ranging from food safety control, environmental monitoring and assessment, forensic investigation, and to medical diagnosis.more » « less
-
Abstract H2W2O7, a metastable material synthesized via selective etching of the Aurivillius‐related Bi2W2O9, is demonstrated as an electrode for high power proton‐based energy storage. Comprehensive structural characterization is performed to obtain a high‐fidelity crystal structure of H2W2O7using an iterative approach that combines X‐ray diffraction, neutron pair distribution function, scanning transmission electron microscopy, Raman spectroscopy, and density functional theory modeling. Electrochemical characterization shows a capacity retention of ≈80% at 1000 mV s–1(1.5‐s charge/discharge time) as compared to 1 mV s–1(≈16‐min charge/discharge time) with cyclability for over 100 000 cycles. Energetics from density functional theory calculations indicate that proton storage occurs at the terminal oxygen sites within the hydrated interlayer. Last, optical micrographs collected during in situ Raman spectroscopy show reversible, multicolor electrochromism, with color changes from pale yellow to blue, purple, and last, orange as a function of proton content. These results highlight the use of selective etching of layered perovskites for the synthesis of metastable transition metal oxide materials and the use of H2W2O7as an anode material for proton‐based energy storage or electrochromic applications.
-
Abstract Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12
m on the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing. -
Abstract The impact of tunable morphologies and plasmonic properties of gold nanostars is evaluated for the surface‐enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2‐[4‐(2‐hydroxyethyl)‐1‐piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar‐stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl. The resulting nanostructures exhibit localized surface plasmon resonance (LSPR) spectra that contain two visible and one near‐infrared plasmonic modes. All three optical features arise from synergistic coupling between the nanostar core and branches. The tunability of these optical resonances is correlated with nanostar morphology through careful transmission electron microscopy (TEM) analysis. As the EPPS concentration used during synthesis increases, both the length and aspect ratio of the branches increase. This causes the two lower energy extinction features to grow in magnitude and become ideal for the SERS detection of uranyl. Finally, uranyl binds to the gold nanostar surface directly and via sulfonate coordination. Changes in the uranyl signal are directly correlated to the plasmonic properties associated with the nanostar branches. Overall, this work highlights the synergistic importance of nanostar morphology and plasmonic properties for the SERS detection of small molecules.