skip to main content


Title: Titanium coated with 2-decenoic analogs reduces bacterial and fungal biofilms
Abstract Aims

Due to antibiotic tolerance of microbes within biofilm, non-antibiotic methods for prevention and treatment of implant-related infections are preferable. The goal of this work is to evaluate a facile loading strategy for medium-chain fatty-acid signaling molecules 2-heptycyclopropane-1-carboxylic acid (2CP), cis-2-decenoic acid (C2DA), and trans-2-decenoic acid, which all act as diffusible signaling factors (DSFs), onto titanium surfaces for comparison of their antimicrobial efficacy.

Methods and results

Titanium coupons were drop-coated with 0.75 mg of DSF in ethanol and dried. Surface characteristics and the presence of DSF were confirmed with Fourier Transform infrared spectroscopy, x-ray photoelectron spectroscopy, and water contact angle. Antimicrobial assays analyzing biofilm and planktonic Staphylococcus aureus, Escherichia coli, or Candida albicans viability showed that planktonic growth was reduced after 24-h incubation but only sustained through 72 h for S. aureus and C. albicans. Biofilm formation on the titanium coupons was also reduced for all strains at the 24-h time point, but not through 72 h for E. coli. Although ∼60% of the loaded DSF was released within the first 2 days, enough remained on the surface after 4 days of elution to significantly inhibit E. coli and C. albicans biofilm. Cytocompatibility evaluations with a fibroblast cell line showed that none of the DSF-loaded groups decreased viability, while C2DA and 2CP increased viability by up to 50%.

Conclusions

In this study, we found that DSF-loaded titanium coupons can inhibit planktonic microbes and prevent biofilm attachment, without toxicity to mammalian cells.

 
more » « less
NSF-PAR ID:
10438049
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Applied Microbiology
Volume:
134
Issue:
8
ISSN:
1365-2672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aims

    Wound infections involving Candida albicans can be challenging to treat because of the fungus’ ability to penetrate wound tissue and form biofilms. The goal of this study was to assess the activity of a hypochlorous acid (HOCl)-generating electrochemical scaffold (e-scaffold) against C. albicans biofilms in vitro and on porcine dermal explants (ex vivo).

    Methods and Results

    C. albicans biofilms were grown either on acrylic-bottom six-well plates (in vitro) or on skin tissue excised from porcine ears (ex vivo), and the polarized e-scaffold was used to generate a continuous supply of low concentration HOCl near biofilm surfaces. C. albicans biofilms grown in vitro were reduced to undetectable amounts within 24 h of e-scaffold exposure, unlike control biofilms (5·28 ± 0·034 log10 (CFU cm-2); P < 0·0001). C. albicans biofilms grown on porcine dermal explants were also reduced to undetectable amounts in 24 h, unlike control explant biofilms (4·29 ± 0·057 log10 (CFU cm-2); P < 0·0001). There was a decrease in the number of viable mammalian cells (35·6 ± 6·4%) in uninfected porcine dermal explants exposed to continuous HOCl-generating e-scaffolds for 24 h compared to explants exposed to nonpolarized e-scaffolds (not generating HOCl) (P < 0·05).

    Conclusions

    Our HOCl-generating e-scaffold is a potential antifungal-free strategy to treat C. albicans biofilms in chronic wounds.

    Significance and Impact of the Study

    Wound infections caused by C. albicans are difficult to treat due to presence of biofilms in wound beds. Our HOCl producing e-scaffold provides a promising novel approach to treat wound infections caused by C. albicans.

     
    more » « less
  2. Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.

     
    more » « less
  3. Abstract

    Antibacterial coatings can prevent and treat medical device‐associated infections. We examined the antibacterial properties of coatings assembled from poly‐l‐lysine (PLL) and hyaluronic acid (HA). PLL/HA films were fabricated using layer‐by‐layer assembly with three different PLL MWs, differentiated by number of repeat units, that is, 33, 91, and 407 (denoted by PLL30, PLL90, and PLL400). Films assembled with all three PLL MWs completely inhibited the growth of planktonic, gram‐positiveStaphylococcus aureusand methicillin‐resistantS. aureusand gram‐negativePseudomonas aeruginosaandEscherichia coliover a 24‐h exposure. All three film architectures also inhibitedS. aureusattachment by ~60–70% compared to non‐film‐coated surfaces, likely attributed to significant film hydration and electrostatic repulsion due to HA. The true differences in antibacterial efficacy between different PLL MWs were observed upon repeated exposure of PLL/HA toS. aureusevery 24 h. We found that PLL400films lost the ability to inhibit planktonicS. aureusgrowth after one use while PLL30and PLL90films were effective over 4–5 and 9–13 repeated exposures, respectively. Our experiments indicated that differences in efficacy were related to low in‐film mobility of PLL400and also agreed with dissolution timescales for PLL30and PLL90films. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1324–1339, 2019.

     
    more » « less
  4. null (Ed.)
    INTRODUCTION: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. METHODS: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used in this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. RESULTS SECTION: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. DISCUSSION: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan) SIGNIFICANCE/CLINICAL RELEVANCE: Orthopedic implants that more than 70% of them are made of metals (i.e., stainless steel, titanium, and cobalt-chromium alloys) are failing through loosening and breakage due to their limited mechanical properties. On the other hand, the risk of infection for these implants and its financial burden on our society is undeniable. We have seen that our uniformly nanograined stainless steel shows improved mechanical properties (i.e., higher stiffness, hardness, fatigue) as compared to conventional stainless steel along with the reduction of biofilm formation on its surface. These promising results made us to peruse the development of nanograined titanium and cobalt-chromium alloys for resolving the complications of orthopedic implants. 
    more » « less
  5. Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of their low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect. 
    more » « less