- Award ID(s):
- 2111546
- NSF-PAR ID:
- 10438163
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2022
- Issue:
- 10
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino backgroundThe neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector.more » « less
-
The diffuse supernova neutrino background (DSNB)—a probe of the core-collapse mechanism and the cosmic star-formation history—has not been detected, but its discovery may be imminent. A significant obstacle for DSNB detection in Super-Kamiokande (Super-K) is detector backgrounds, especially due to atmospheric neutrinos (more precisely, these are foregrounds), which are not sufficiently understood. We perform the first detailed theoretical calculations of these foregrounds in the range 16–90 MeV in detected electron energy, taking into account several physical and detector effects, quantifying uncertainties, and comparing our predictions to the 15.9 live time years of pre-gadolinium data from Super-K stages I–IV. We show that our modeling reasonably reproduces this low-energy data as well as the usual high-energy atmospheric-neutrino data. To accelerate progress on detecting the DSNB, we outline key actions to be taken in future theoretical and experimental work. In a forthcoming paper, we use our modeling to detail how low-energy atmospheric-neutrino events register in Super-K and suggest new cuts to reduce their impact.
Published by the American Physical Society 2024 -
Abstract The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the
mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via is 36.9% ± 4.9% with a background level of events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies. -
A bstract We study damping signatures at the Jiangmen Underground Neutrino Observatory (JUNO), a medium-baseline reactor neutrino oscillation experiment. These damping signatures are motivated by various new physics models, including quantum decoherence, ν 3 decay, neutrino absorption, and wave packet decoherence. The phenomenological effects of these models can be characterized by exponential damping factors at the probability level. We assess how well JUNO can constrain these damping parameters and how to disentangle these different damping signatures at JUNO. Compared to current experimental limits, JUNO can significantly improve the limits on τ 3 / m 3 in the ν 3 decay model, the width of the neutrino wave packet σ x , and the intrinsic relative dispersion of neutrino momentum σ rel .more » « less
-
Abstract The OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $$10^{-16}\hbox { g/g}$$ 10 - 16 g/g of $$^{238}\hbox {U}$$ 238 U and $$^{232}\hbox {Th}$$ 232 Th requires a large ( $$\sim 20\,\hbox {m}^3$$ ∼ 20 m 3 ) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.more » « less