Observations from past space missions report on the significant abundance of N+, in addition to those of O+, outflowing from the terrestrial ionosphere and populating the near‐Earth region. However, instruments on board current space missions lack the mass resolution to distinguish between the two, and often the role of N+in regulating the magnetosphere dynamics, is lumped together with that of O+ions. For instance, our understanding regarding the role of electromagnetic ion cyclotron (EMIC) waves in controlling the loss and acceleration of radiation belt electrons and ring current ions has been based on the contribution of He+and O+ions only. We report the first observations by Van Allen Probes of linearly polarized N+EMIC waves, which confirm the presence of N+in the terrestrial magnetosphere, and open up new avenues to particle energization, loss, and transport mechanisms, based on the altered magnetospheric plasma composition.
Based on the predictions of global 3D hybrid simulations, we present a new transport/acceleration path for escaped O+ions in the upstream solar wind region resulting from the impact of a particular IMF tangential discontinuity (TD) with negative (positive) IMF
- PAR ID:
- 10438382
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract During magnetospheric substorms, plasma from magnetic reconnection in the magnetotail is thought to reach the inner magnetosphere and form a partial ring current. We simulate this process using a fully kinetic 3D particle‐in‐cell (PIC) numerical code along with a global magnetohydrodynamics (MHD) model. The PIC simulation extends from the solar wind outside the bow shock to beyond the reconnection region in the tail, while the MHD code extends much further and is run for nominal solar wind parameters and a southward interplanetary magnetic field. By the end of the PIC calculation, ions and electrons from the tail reconnection reach the inner magnetosphere and form a partial ring current and diamagnetic current. The primary source of particles to the inner magnetosphere is bursty bulk flows (BBFs) that originate from a complex pattern of reconnection in the near‐Earth magnetotail at to . Most ion acceleration occurs in this region, gaining from 10 to 50 keV as they traverse the sites of active reconnection. Electrons jet away from the reconnection region much faster than the ions, setting up an ambipolar electric field allowing the ions to catch up after approximately 10 ion inertial lengths. The initial energy flux in the BBFs is mainly kinetic energy flux from the ions, but as they move earthward, the energy flux changes to enthalpy flux at the ring current. The power delivered from the tail reconnection in the simulation to the inner magnetosphere is W, which is consistent with observations.
-
Abstract The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMF
B z ) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFB z conditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFB z . A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work. -
Abstract Magnetic reconnection occurring between the interplanetary magnetic field (IMF) and the dayside magnetopause causes a circulation of magnetic flux and plasma within the magnetosphere, known as the Dungey cycle. This circulation is transmitted to the ionosphere via field‐aligned currents (FACs). The magnetic flux transport within the Dungey cycle is quantified by the cross‐polar cap potential (CPCP or transpolar voltage). Previous studies have suggested that under strong driving conditions the CPCP can saturate near a value of 250 kV. In this study we investigate whether an analogous saturation occurs in the magnitudes of the FACs, using observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. The solar wind speed, density and pressure, the
B z component of the IMF, and combinations of these, were compared to the concurrent integrated current magnitude, across each hemisphere. We find that FAC magnitudes are controlled most strongly by solar wind speed and the orientation and strength of the IMF. FAC magnitude increases monotonically with solar wind driving but there is a distinct knee in the variation around IMFB z = −10 nT, above which the increase slows. -
Abstract Foreshock bubbles (FBs) have been observed upstream of solar wind tangential discontinuities (TDs). A hypothesized mechanism is that foreshock ions with gyroradii larger than the TD thickness may move to upstream side of TDs and generate FBs. In this study, we present the very first three‐dimensional global hybrid simulation of an FB driven by a TD. After the TD encounters the ion foreshock, plasma and magnetic field perturbations are generated upstream of the TD. These perturbations are characteristically consistent with the observed TD‐driven FBs, confirming that TDs can form FBs. We further analyze the initial perpendicular temperature increase initiating the FB and compare the temperature structure with that from tracing test‐particles in static TD electric and magnetic fields. The structure can be explained by the perpendicular velocity change of foreshock ions with large gyroradii as they encounter the magnetic field direction change across the TD, which supports the hypothesized mechanism.