skip to main content


Title: Yukon-Kuskokwim River Delta 2015 fire burn depth measurements and unburned soil and vegetation organic matter and carbon content collected in 2019.
Tundra environments in Alaska are experiencing elevated levels of wildfire, and the frequency is expected to keep increasing due to rapid warming of the Arctic. Because of large amounts of carbon stored in permafrost soils, tundra wildfires may release significant amounts of carbon to the atmosphere that ultimately influence the Earth’s radiative balance. Therefore, accounting for the amount of carbon released from tundra wildfires is important for understanding the trajectory of climate change. We collected data in the Yukon-Kuskokwim River Delta during the summer of 2019 for the purpose of determining organic matter and carbon lost during the 2015 fire season. Organic matter and carbon lost from combustion were determined by combining burn depth measurements with organic matter and carbon content measurements from unburned tundra. Burn depth measurements were taken opportunistically across different levels of burn severity. Three vegetative markers, Sphagnum fuscum, Eriophorum, and Dicranum spp., that survived the fire event were used to measure the difference between the pre and post fire soil height in unburned and burned areas respectively, defined here as burn depth. All burn depth measurements are accompanied with coordinate locations so that they can ground truth and be upscaled by remote sensing data of burn severity. Organic matter and carbon content of the dense live vegetation layer and fibric soil layer were measured in the lab from vegetation and soil cores taken from four different sites in unburned tundra areas.  more » « less
Award ID(s):
1915307
NSF-PAR ID:
10438456
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
["tundra","fire ecology","carbon"]
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wildfires have the potential to dramatically alter the carbon (C) storage potential, ecological function, and the fundamental mechanisms that control the C balance of Pacific Northwest (PNW) forested ecosystems. In this study, we explored how wildfire influences processes that control soil C stabilization and the consequent soil C persistence, and the role of previous fire history in determining soil C fire response dynamics. We collected mineral soils at four depth increments from burned (low, moderate, and high soil burn severity classes) and unburned areas and surveyed coarse woody debris (CWD) in sites within the footprint of the 2020 Holiday Farm Fire and in surrounding Willamette National Forest and the H.J. Andrews Experimental Forest. We found few changes in overall soil C pools as a function of fire severity; we instead found that unburned sites contained high levels of pyrogenic C (PyC) that were commensurate with PyC concentrations in the high severity burn sites—pointing to the high background rate of fire in these ecosystems. An analysis of historical fire events lends additional support, where increasing fire count is loosely correlated with increasing PyC concentration. An unexpected finding was that PyC concentration was lower in low soil burn severity sites than in control sites, which we attribute to fundamental ecological differences in regions that repeatedly burn at high severity compared with those that burn at low severity. Our CWD analysis showed that high mean fire return interval (decades between fire events) was strongly correlated with low annual CWD accumulation rate; whereas areas that burn frequently had a high annual CWD accumulation rate. Within the first year postfire, trends in soil density fractions demonstrated no significant response to fire for the mineral-associated organic matter pool but slight increases in the particulate pool with increasing soil burn severity—likely a function of increased charcoal additions. Overall, our results suggest that these PNW forest soils display complex responses to wildfire with feedbacks between CWD pools that provide varying fuel loads and a mosaic fire regime across the landscape. Microclimate and historic fire events are likely important determinants of soil C persistence in these systems.

     
    more » « less
  2. Abstract. Tundra environments are experiencing elevated levels of wildfire, and thefrequency is expected to keep increasing due to rapid climate change in theArctic. Tundra wildfires can release globally significant amounts ofgreenhouse gasses that influence the Earth's radiative balance. Here wedevelop a novel method for estimating carbon loss and the resultingradiative forcings of gaseous and aerosol emissions from the 2015 tundrawildfires in the Yukon–Kuskokwim Delta (YKD), Alaska. We paired burn depthmeasurements using two vegetative reference points that survived the fireevent – Sphagnum fuscum and Dicranum spp. – with measurements of local organic matter and soil carbonproperties to estimate total ecosystem organic matter and carbon loss. Weused remotely sensed data on fire severity from Landsat 8 to scale ourmeasured losses to the entire fire-affected area, with an estimated totalloss of 2.04 Tg of organic matter and 0.91 Tg of carbon and an average lossof 3.76 kg m−2 of organic matter and 1.68 kg m−2 of carbon in the2015 YKD wildfires. To demonstrate the impact of these fires on the Earth'sradiation budget, we developed a simple but comprehensive framework toestimate the radiative forcing from Arctic wildfires. We synthesizedexisting research on the lifetime and radiative forcings of gaseous andaerosol emissions of CO2, N2O, CH4, O3 and itsprecursors, and fire aerosols. The model shows a net positive cumulativemean radiative forcing of 3.67 W m−2 using representative concentration pathway (RCP) 4.5 and 3.37 W m−2using RCP 8.5 at 80 years post-fire, which was dominated by CO2emissions. Our results highlight the climate impact of tundra wildfires,which positively reinforce climate warming and increased fire frequencythrough the radiative forcings of their gaseous emissions. 
    more » « less
  3. Hui, Dafeng (Ed.)
    Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m -2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed. 
    more » « less
  4. Abstract

    Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation and associated weathering, but that changes in lateral silica export may depend on vegetation uptake during the first decade of postwildfire succession.

     
    more » « less
  5. Abstract

    Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient‐limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10‐year‐old  Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow‐weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ15N‐NO3, indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2‐ to 10‐fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant‐mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession.

     
    more » « less