skip to main content

This content will become publicly available on May 28, 2024

Title: Engineering the glass structure of a discotic liquid crystal by multiple kinetic arrests
X-ray scattering has been used to characterize the columnar packing and the π stacking in a glass-forming discotic liquid crystal. In the equilibrium liquid state, the intensities of the scattering peaks for π stacking and columnar packing are proportional to each other, indicating concurrent development of the two orders. Upon cooling into the glassy state, the π–π distance shows a kinetic arrest with a change in the thermal expansion coefficient (TEC) from 321 to 109 ppm/K, while the intercolumnar spacing exhibits a constant TEC of 113 ppm/K. By changing the cooling rate, it is possible to prepare glasses with a wide range of columnar and π stacking orders, including zero order. For each glass, the columnar order and the π stacking order correspond to a much hotter liquid than its enthalpy and π–π distance, with the difference between the two internal (fictive) temperatures exceeding 100 K. By comparison with the relaxation map obtained by dielectric spectroscopy, we find that the δ mode (disk tumbling within a column) controls the columnar order and the π stacking order trapped in the glass, while the α mode (disk spinning about its axis) controls the enthalpy and the π–π spacing. Our finding is relevant for controlling the different structural features of a molecular glass to optimize its properties.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. X-ray scattering has been used to characterize glassy itraconazole (ITZ) prepared by cooling at different rates. Faster cooling produces ITZ glasses with lower (or zero) smectic order with more sinusoidal density modulation, larger molecular spacing, and shorter lateral correlation between the rod-like molecules. We find that each glass is characterized by not one, but two fictive temperatures Tf(the temperature at which a chosen order parameter is frozen in the equilibrium liquid). The higher Tfis associated with the regularity of smectic layers and lateral packing, while the lower Tfwith the molecular spacings between and within smectic layers. This indicates that different structural features are frozen on different timescales. The two timescales for ITZ correspond to its two relaxation modes observed by dielectric spectroscopy: the slower δ mode (end-over-end rotation) is associated with the freezing of the regularity of molecular packing and the faster α mode (rotation about the long axis) with the freezing of the spacing between molecules. Our finding suggests a way to selectively control the structural features of glasses.

    more » « less
  2. null (Ed.)
    Flexible alkyl side chain in conjugate polymers (CPs) improves the solubility and promotes solution processability, in addition, it affects interchain packing and charge mobilities. Despite the well-known charge mobility and morphology correlation for these semi-crystalline polymers, there is a lack of fundamental understanding of the impact of side chain on their crystallization kinetics. In the present work, isothermal crystallization of five poly(3-alkylthiophene-2,5-diyl) (P3ATs) with different side-chain structures were systematically investigated. To suppress the extremely fast crystallization and trap the sample into amorphous glass, an advanced fast scanning chip calorimetry technique, which is able to quench the sample with few to tens thousands of K/s, was applied. Results show that the crystallization of P3ATs was greatly inhibited after incorporation of branched side chains, as indicated by a dramatic up to six orders of magnitude decrease in the crystallization rate. The suppressed crystallization of P3ATs were correlated with an increased π–π stacking distance due to unfavorable side-chain steric interaction. This work provides a pathway to use side-chain engineering to control the crystallization behavior for CPs, thus to control device performance. 
    more » « less
  3. Recently discovered diamond nanothreads offer a stiff, sp 3 -hybridized backbone unachievable in conventional polymer synthesis that is formed through the solid-state pressure-induced polymerization of simple aromatics. This method enables monomeric A-B alternation to fully translate from co-crystal design to polymer backbone in a sequence-defined manner. Here, we report the compression of aryl:perfluoroaryl (Ar/ArF) co-crystals containing –OH and –CHO functional groups. We analyze the tolerance of these functional groups to polymerization, explore the possibility of keto–enol tautomerization, and compare the reaction outcomes of targeted solid-state Ar/ArF design on nanothread formation. Two new co-crystals comprising phenol:pentafluorobenzaldehyde (ArOH:ArFCHO) and benzaldehdye:pentafluorophenol (ArCHO:ArFOH) were synthesized through slow solvent evaporation. Analysis of the single-crystal structures revealed different hydrogen bonding patterns between the –OH and –CHO in each solid (tape and orthogonal dimers, respectively), in addition to markedly different π–π stacking distances within the Ar/ArF synthons. In situ Raman spectroscopy was used to monitor the compression of each co-crystal to 21 GPa and illustrated peak shifts for the –OH and –CHO stretching regions during compression. Photoluminescence corresponding to polymerization appeared at a lower pressure for the co-crystal with the smallest π–π stacking distance. Nevertheless, the recovered solid with the larger centroid : centroid and centroid : plane π–π stacking distances featured a diffraction ring consistent with the anticipated dimensions of a co-crystal-derived nanothread packing, indicating that both functional group interactions and parallel stacking affect the pressure-induced polymerization to form nanothreads. IR spectroscopy of the recovered samples revealed large shifts in the –OH & –CHO stretching regions, particularly noticable for ArCHO:ArFOH, which may reflect geometrical constraints associated with forming a rigid thread backbone under pressure. Simulation suggests that hydrogen bonding networks may affect the relative compressibility of the co-crystal along a thread-forming axis to modulate the propensity for nanothread formation. 
    more » « less
  4. An experimental study of the configurational thermodynamics for a series of near-eutectic Pt80-xCuxP20bulk metallic glass-forming alloys is reported where 14 <x< 27. The undercooled liquid alloys exhibit very high fragility that increases asxdecreases, resulting in an increasingly sharp glass transition. With decreasingx, the extrapolated Kauzmann temperature of the liquid,TK, becomes indistinguishable from the conventionally defined glass transition temperature,Tg. Forx< 17, the observed liquid configurational enthalpy vs.Tdisplays a marked discontinuous drop or latent heat at a well-defined freezing temperature,Tgm. The entropy drop for this first-order liquid/glass transition is approximately two-thirds of the entropy of fusion of the crystallized eutectic alloy. BelowTgm, the configurational entropy of the frozen glass continues to fall rapidly, approaching that of the crystallized eutectic solid in the low T limit. The so-called Kauzmann paradox, with negative liquid entropy (vs. the crystalline state), is averted and the liquid configurational entropy appears to comply with the third law of thermodynamics. Despite their ultrafragile character, the liquids atx= 14 and 16 are bulk glass formers, yielding fully glassy rods up to 2- and 3-mm diameter on water quenching in thin-wall silica tubes. The low Cu content alloys are definitive examples of glasses that exhibit first-order melting.

    more » « less
  5. Liquid jet impingement is one of the most effective methods for dissipating local hotpot heat fluxes in microelectronics. Due to its normal incident flow-field, jet impingement cooling can achieve heat transfer coefficients (HTCs) approaching ≈1 MW/m 2 ·K due to its ability to thin the local thermal boundary layer in the stagnation region. This experimental study presents HTC data for water jet impingement cooling of a laser heated Hafnium (Hf) thin-film on glass. A laser diode induces local hotspots for either a steady- or pulsed-laser operation mode. The hotspots have areas ranging within 0.04 mm 2 to 0.2 mm 2 and heat fluxes up to ≈3.5 MW/m 2 . A submerged jet impingement configuration is pursued with an inlet jet diameter of ~1.2 mm, jet nozzle to hotspot/surface distance of ~3.2 mm, and the jet Reynolds Number of ~2004. The HTCs are measured using infrared (IR) thermometry using a 1.5-5 μm spectral resolution FLIR camera. Also investigated is the spatial dependence of the HTC relative to the offset between jet/wall stagnation point and the center of the local hotspot. For example, for impinging jets that are co-aligned with the hotspot center, HTCs of ~650 kW/m 2 ·K and ~470 kW/m 2 ·K are measured for steady and pulsed-modulated laser heating (respectively), whereas, for offsets beyond ~6 mm (x/D >5), the measured HTCs are <; 100 kW/m 2 ·K. 
    more » « less