Physical aging and structural recovery are the processes with which the structure of a system approaches equilibrium after some perturbation. Various methods exist, that initiate structural recovery, such as changing the temperature or applying a strong, external static field. This work is concerned with high alternating electric fields and their suitability to study structural recovery and aging. The present work demonstrates that rationalizing the nonlinear dielectric response of a supercooled liquid to high-amplitude ac-fields requires multiple fictive temperatures. This feature is in stark contrast to structural recovery after a temperature down-jump or a considerable increase in the static electric field, for which a single parameter, the fictive temperature or material time, describes the structural change. In other words, the structural recovery from a high ac-field does not adhere to time aging–time superposition, which is so characteristic of genuine aging processes.
more »
« less
One experiment makes a direct comparison of structural recovery with equilibrium relaxation
For a molecular glass-former, propylene glycol, we directly compare the equilibrium fluctuations, measured as “structural” relaxation in the regime of linear response, with structural recovery, i.e., field induced physical aging in the limit of a small perturbation. The two distinct correlation functions are derived from a single experiment. Because the relaxation time changes only 2% during structural recovery, no aging model is needed to analyze the results. Although being conceptually different processes, dielectric relaxation and recovery dynamics are observed to be identical for propylene glycol, whereas single-particle dynamics as seen by photon correlation spectroscopy are significantly faster. This confirms the notion that structural recovery and aging are governed by all modes observed by dielectric spectroscopy, i.e., including cross correlations, not only by single-particle dynamics. A comparison with analogous results for other materials suggests that the relation between relaxation and recovery time scales may be material specific rather than universal.
more »
« less
- Award ID(s):
- 1904601
- PAR ID:
- 10438585
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 22
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 224501
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.more » « less
-
Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics within these electrolytes are limited. These dynamics are responsible for Li+ transport. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li+ solvation clusters. A strong correlation between exchange times and ionic conductivity was observed. This correlation and other observations suggest structural diffusion as the primary transport mechanism rather than vehicular diffusion. Additionally, spectral diffusion observables measured by the probe were directly linked to the de-solvation dynamics of the Li+ clusters, as supported by density functional theory and molecular dynamics simulations. These findings provide detailed molecular-level insights into LIB electrolytes’ transport dynamics and solvation structures, offering rational design pathways to advanced electrolytes for next-generation LIBs.more » « less
-
Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS). Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions. Coupled with traditional characterization techniques, XPCS was conducted to monitor the dynamic evolution of the different phases. Additionally, simulated XPCS results were obtained using colloidal rods and compared with the experimental data, offering additional insights into the dynamic behavior of the system. The results indicate that the particle dynamics of CNCs undergo a stepped decay in three stages during the self-assembly process in PG, coinciding with the observed phases. The phase transitions are associated with a total drop of Brownian diffusion rates by four orders of magnitude, a decrease of more than a thousand times slower than expected in an ideal system of repulsive Brownian rods. Given the similarity in the phase behaviors in CNCs dispersed in PG and in water, we hypothesize that these dynamic behaviors can be extrapolated to polar solvent environments. Importantly, these findings represent the direct measurement of CNC dynamics using XPCS, underscoring the feasibility of directly assessing the dynamic behavior of other rod-like colloidal suspensions.more » « less
-
null (Ed.)Recent findings that the association bond lifetimes τ α* in associating polymers diverge from their supramolecular network relaxation times τ c challenge past theories. The bond lifetime renormalization proposed by Rubinstein and coworkers [Stukalin et al. , Macromolecules , 2013, 46 , 7525] provides a promising explanation. To examine systematically its applicability, we employ shear rheology and dielectric spectroscopy to study telechelic associating polymers with different main chain (polypropylene glycol and polydimethylsiloxane), molecular weight (below entanglement molecular weight) and end groups (amide, and carboxylic acid) which form dimeric associations by hydrogen bonding. The separation between τ c (probed by rheology) and τ α* (probed by dielectric spectroscopy) strongly increases with chain length as qualitatively predicted by the model. However, to describe the increase quantitatively, a transition from Rouse to reptation dynamics must be assumed. This suggests that dynamics of super-chains must be considered to properly describe the transient network.more » « less
An official website of the United States government

