Untethered stimuli‐responsive soft materials with programmed sequential self‐folding are of great interest due to their ability to achieve task‐specific shape transformation with complex final configuration. Here, reversible and sequential self‐folding soft actuators are demonstrated by utilizing a temperature‐responsive nanocomposite hydrogel with different folding speeds but the same chemical composition. By varying the UV light intensity during the photo‐crosslinking of the nanocomposite hydrogel, different types of microstructures can be realized via phase separation mechanisms, which allow to control the folding speeds. The self‐folding structures are fabricated by integrating two dissimilar materials (i.e., a nanocomposite hydrogel and an elastomer) into hinge‐based bilayer structures via extrusion‐based 3D printing. It has been demonstrated that the folding kinetics can be accelerated by more than one order of magnitude due to the phase‐separated microstructure formed by the relatively weaker UV intensity (≈10 mW cm‐2) compared to the one formed by stronger UV intensity (≈100 mW cm‐2). 3D structures with sequential self‐folding capabilities are realized by prescribing actuation speeds and folding angles to specific hinges of the nanocomposite hydrogel. Sequential folding box and self‐locking latch structures are fabricated to demonstrate the ability to capture and hold objects underwater.
Shape morphing of stimuli‐responsive composite hydrogels has received considerable attention in different research fields. Although various multilayer structures with dissimilar materials are studied to achieve shape morphing, combining swellable hydrogel layers with non‐swellable layers results in issues with interface adhesion and structural integrity. In this study, single‐hydrogel‐based bilayer actuators comprising poly(
- Award ID(s):
- 2224740
- NSF-PAR ID:
- 10438670
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 10
- Issue:
- 33
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The stimuli-responsive self-folding structure is ubiquitous in nature, for instance, the mimosa folds its leaves in response to external touch or heat, and the Venus flytrap snaps shut to trap the insect inside. Thus, modeling self-folding structures has been of great interest to predict the final configuration and understand the folding mechanism. Here, we apply a simple yet effective method to predict the folding angle of the temperature-responsive nanocomposite hydrogel/elastomer bilayer structure manufactured by 3D printing, which facilitates the study of the effect of the inevitable variations in manufacturing and material properties on folding angles by comparing the simulation results with the experimentally measured folding angles. The defining feature of our method is to use thermal expansion to model the temperature-responsive nanocomposite hydrogel rather than the nonlinear field theory of diffusion model that was previously applied. The resulted difference between the simulation and experimentally measured folding angle ( i.e. , error) is around 5%. We anticipate that our method could provide insight into the design, control, and prediction of 3D printing of stimuli-responsive shape morphing ( i.e. , 4D printing) that have potential applications in soft actuators, robots, and biomedical devices.more » « less
-
Abstract Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.
-
A vision for soft, autonomous materials entails synthesis of multiple senses in multifunctional materials where material response requires sensitivity to external stimuli. Stimuli-responsive hydrogels are of particular interest for optically induced mechanical response due to the ability to transform external stimuli into large, reversible shape change. Specifically, temperature-responsive hydrogels are broadly used and can be designed to achieve deformation through the photothermal effect as a result of surface plasmonic resonance of gold nanoparticles. Here, a multi-material stimuli-responsive hydrogel network with embedded gold nanoparticles is demonstrated in a unit cell pattern with anisotropic swelling behavior in response to visible light. Reversible, anisotropic swelling leads to bending motion that contributes to the development of soft, autonomous materials.more » « less