skip to main content


This content will become publicly available on July 28, 2024

Title: NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.  more » « less
Award ID(s):
1847774
NSF-PAR ID:
10438679
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump–probe type experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer–Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from the ground vibrational level of the D 1 Σ + adiabatic state that is embedded in the manifold of near-dissociation C 1 Σ + vibrational states. When coupled through a sharply localized first-order derivative coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver methodology. 
    more » « less
  2. We generalize the quasi-diabatic (QD) propagation scheme to simulate the non-adiabatic polariton dynamics in molecule–cavity hybrid systems. The adiabatic-Fock states, which are the tensor product states of the adiabatic electronic states of the molecule and photon Fock states, are used as the locally well-defined diabatic states for the dynamics propagation. These locally well-defined diabatic states allow using any diabatic quantum dynamics methods for dynamics propagation, and the definition of these states will be updated at every nuclear time step. We use several recently developed non-adiabatic mapping approaches as the diabatic dynamics methods to simulate polariton quantum dynamics in a Shin–Metiu model coupled to an optical cavity. The results obtained from the mapping approaches provide very accurate population dynamics compared to the numerically exact method and outperform the widely used mixed quantum-classical approaches, such as the Ehrenfest dynamics and the fewest switches surface hopping approach. We envision that the generalized QD scheme developed in this work will provide a powerful tool to perform the non-adiabatic polariton simulations by allowing a direct interface between the diabatic dynamics methods and ab initio polariton information.

     
    more » « less
  3. Solving the time-dependent Schrödinger equation is an important application area for quantum algorithms. We consider Schrödinger's equation in the semi-classical regime. Here the solutions exhibit strong multiple-scale behavior due to a small parameter ℏ , in the sense that the dynamics of the quantum states and the induced observables can occur on different spatial and temporal scales. Such a Schrödinger equation finds many applications, including in Born-Oppenheimer molecular dynamics and Ehrenfest dynamics. This paper considers quantum analogues of pseudo-spectral (PS) methods on classical computers. Estimates on the gate counts in terms of ℏ and the precision ε are obtained. It is found that the number of required qubits, m , scales only logarithmically with respect to ℏ . When the solution has bounded derivatives up to order ℓ , the symmetric Trotting method has gate complexity O ( ( ε ℏ ) − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 − 1 2 ℓ ) ) , provided that the diagonal unitary operators in the pseudo-spectral methods can be implemented with p o l y ( m ) operations. When physical observables are the desired outcomes, however, the step size in the time integration can be chosen independently of ℏ . The gate complexity in this case is reduced to O ( ε − 1 2 p o l y l o g ( ε − 3 2 ℓ ℏ − 1 ) ) , with ℓ again indicating the smoothness of the solution. 
    more » « less
  4. Organic Polymer-based photovoltaic systems offer a viable alternative to more standard solid-state devices for light-harvesting applications. In this study, we investigate the electronic dynamics of a model organic photovoltaic (OPV) heterojunction consisting of polyphenylene vinylene (PPV) oligomers and a [ 6,6 ] -phenyl C61-butyric acid methyl ester (PCBM) blend. Our approach treats the classical molecular dynamics of the atoms within an Ehrenfest mean-field treatment of the π - π ⁎ singly excited states spanning a subset of donor and acceptor molecules near the phase boundary of the blend. Our results indicate that interfacial electronic states are modulated by C=C bond stretching motions and that such motions induce avoided crossings between nearby excited states thereby facilitating transitions from localized excitonic configurations to delocalized charge-separated configurations on an ultrafast time-scale. The lowest few excited states of the model interface rapidly mix allowing low frequency C-C out-of-plane torsions to modulate the potential energy surface such that the system can sample both intermolecular charge-transfer and charge-separated electronic configurations on sub-100 fs time scales. Our simulations support an emerging picture of carrier generation in OPV systems in which interfacial electronic states can rapidly decay into charge-separated and current producing states via coupling to vibronic degrees of freedom. 
    more » « less
  5. Abstract

    Quantum chemistry is a key application area for noisy‐intermediate scale quantum (NISQ) devices, and therefore serves as an important benchmark for current and future quantum computer performance. Previous benchmarks in this field have focused on variational methods for computing ground and excited states of various molecules, including a benchmarking suite focused on the performance of computing ground states for alkali‐hydrides under an array of error mitigation methods. State‐of‐the‐art methods to reach chemical accuracy in hybrid quantum‐classical electronic structure calculations of alkali hydride molecules on NISQ devices from IBM are outlined here. It is demonstrated how to extend the reach of variational eigensolvers with symmetry preserving Ansätze. Next, it is outlined how to use quantum imaginary time evolution and Lanczos as a complementary method to variational techniques, highlighting the advantages of each approach. Finally, a new error mitigation method is demonstrated which uses systematic error cancellation via hidden inverse gate constructions, improving the performance of typical variational algorithms. These results show that electronic structure calculations have advanced rapidly, to routine chemical accuracy for simple molecules, from their inception on quantum computers a few short years ago, and they point to further rapid progress to larger molecules as the power of NISQ devices grows.

     
    more » « less