skip to main content


Title: Coursing the mottled mosaic: Generalist predators track pulses in availability of neonatal ungulates
Abstract

The density and distribution of resources shape animal movement and behavior and have direct implications for population dynamics. Resource availability often is “pulsed” in space and time, and individuals should cue in on resource pulses when the energetic gain of doing so exceeds that of stable resources. Birth pulses of prey represent a profitable but ephemeral resource and should thereby result in shifting functional responses by predators. We evaluated movements and resource selection of coyotes (Canis latrans) across a gradient of reproductive stages ranging from late gestation to peak lactation of female mule deer (Odocoileus hemionus) in southwest Wyoming, USA, to test whether coyotes exhibited shifts in selection and movement behavior relative to the availability and vulnerability of neonatal mule deer. We expected coyotes to track pulses in availability of neonatal mule deer, and such behavior would be represented by shifts in resource selection and search behavior of coyotes that would be strongest during peak parturition of mule deer. Coyotes selected areas of high relative probability of use by female mule deer and did so most strongly during peak parturition. Furthermore, searching behavior of coyotes intensified during pulses of availability of deer neonates. Our findings support the notion that coyotes exploit pulses of neonatal deer, presumably as an attempt to capitalize on a vulnerable, energy‐rich resource. Our work quantifies the behavioral mechanisms by which coyotes consume ungulate neonates and provides one of the first examples of a mammalian predator–prey system centered on a pulsed resource.

 
more » « less
NSF-PAR ID:
10438766
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sexual segregation has been intensely studied across diverse ecosystems and taxa, but studies are often limited to periods when animals occupy distinct seasonal ranges. Some avian and marine studies have revealed that habitat segregation, when sexes differ spatially or temporally in use of the physical landscape, is common during the migratory period and characterized by sex‐specific differences in migratory behaviors. Recent research highlights the importance of understanding movement patterns in the context of the full annual life cycle and highlights the need to extend relevant theories of sexual segregation to the migratory period. We tested predictions from two leading hypotheses of sexual segregation, the forage‐selection hypothesis (FSH) and the reproductive strategy hypothesis (RSH) as applied to the migratory period. We collected global positioning system (GPS) location data for male and female mule deer (Odocoileus hemionus) in south‐central Wyoming and northwest Colorado and tested the main predictions of the FSH and RSH. Both sexes showed high fidelity to their migratory routes, but route fidelity was more variable in males. Males also started spring migrations earlier, ended spring and autumn migrations later, and spent 22% more time on stopover sites during spring migrations. Consequently, males took twice as long in spring and 44% longer in autumn to complete migration. Our results revealed clear sex‐specific migratory behaviors and supported predictions of the RSH that male foraging behaviors optimize body condition for the autumn rut, and females prioritize foraging while balancing reproductive constraints. Specifically, males timed their movements with spring green‐up as optimally as females, and the timing of male migrations and use of stopovers suggested that males prioritized time in areas of high‐quality forage. This refutes predictions of the FSH during the migratory period that males should consistently choose habitats with abundant, low‐quality forage. Our findings provide an important contribution to sexual segregation theory by extending relevant theories to understand male and female movements during the migratory period.

     
    more » « less
  2. Outdoor recreation benefits local economies, environmental education, and public health and wellbeing, but it can also adversely affect local ecosystems. Human presence in natural areas alters feeding and reproductive behaviors, physiology, and population structure in many wildlife species, often resulting in cascading effects through entire ecological communities. As outdoor recreation gains popularity, existing trails are becoming overcrowded and new trails are being built to accommodate increasing use. Many recreation impact studies have investigated effects of the presence or absence of humans while few have investigated recreation effects on wildlife using a gradient of disturbance intensity. We used camera traps to quantify trail use by humans and mid- to large-sized mammals in an area of intense outdoor recreation–the Upper East River Valley, Colorado, USA. We selected five trails with different types and intensities of human use and deployed six cameras on each trail for five weeks during a COVID-enhanced 2020 summer tourism season. We used occupancy models to estimate detectability and habitat use of the three most common mammal species in the study area and determined which human activities affect the habitat use patterns of each species. Human activities affected each species differently. Mule deer (Odocoileus hemionus) tended to use areas with more vehicles, more predators, and greater distances from the trailhead, and they were more likely to be detected where there were more bikers. Coyotes (Canis latrans) and red foxes (Vulpes vulpes) were most likely to use areas where their prey species occurred, and foxes were more likely to be detected where the vegetation was shorter. Humans and their recreational activities differentially influence different species. More generally, these results reinforce that it is unlikely that a single management policy is suitable for all species and management should thus be tailored for each target species.

     
    more » « less
  3. Abstract

    Growing evidence supports the hypothesis that temperate herbivores surf the green wave of emerging plants during spring migration. Despite the importance of autumn migration, few studies have conceptualized resource tracking of temperate herbivores during this critical season. We adapted the frost wave hypothesis (FWH), which posits that animals pace their autumn migration to reduce exposure to snow but increase acquisition of forage. We tested the FWH in a population of mule deer in Wyoming, USA by tracking the autumn migrations ofn = 163 mule deer that moved 15–288 km from summer to winter range. Migrating deer experienced similar amounts of snow but 1.4–2.1 times more residual forage than if they had naïve knowledge of when or how fast to migrate. Importantly, deer balanced exposure to snow and forage in a spatial manner. At the fine scale, deer avoided snow near their mountainous summer ranges and became more risk prone to snow near winter range. Aligning with their higher tolerance of snow and lingering behavior to acquire residual forage, deer increased stopover use by 1 ± 1 day (95% CI) day for every 10% of their migration completed. Our findings support the prediction that mule deer pace their autumn migration with the onset of snow and residual forage, but refine the FWH to include movement behavior en route that is spatially dynamic.

     
    more » « less
  4. Abstract

    In temperate regions, the annual pattern of spring onset can be envisioned as a ‘green wave’ of emerging vegetation that moves across continents from low to high latitudes, signifying increasing food availability for consumers.

    Many herbivorous migrants ‘surf’ such resource waves, timing their movements to exploit peak vegetation resources in early spring. Although less well studied at the individual level, secondary consumers such as insectivorous songbirds can track vegetation phenology during migration as well.

    We hypothesized that four species of ground‐foraging songbirds in eastern North America—two warblers and two thrushes—time their spring migrations to coincide with later phases of vegetation phenology, corresponding to increased arthropod prey, and predicted they would match their migration rate to the green wave but trail behind it rather than surfing its leading edge.

    We further hypothesized that the rate at which spring onset progresses across the continent influences bird migration rates, such that individuals adjust migration timing within North America to phenological conditions they experienceen route.

    To test our hypotheses, we used a continent‐wide automated radio telemetry network to track individual songbirds on spring migration between the U.S. Gulf Coast region and northern locations closer to their breeding grounds.

    We measured vegetation phenology using two metrics of spring onset, the spring index first leaf date and the normalized difference vegetation index (NDVI), then calculated the rate and timing of spring onset relative to bird detections.

    All individuals arrived in the southeastern United States well after local spring onset. Counter to our expectations, we found that songbirds exhibited a ‘catching up’ pattern: Individuals migrated faster than the green wave of spring onset, effectively closing in on the start of spring as they approached breeding areas.

    While surfing of resource waves is a well‐documented migration strategy for herbivorous waterfowl and ungulates, individual songbirds in our study migrated faster than the green wave and increasingly caught up to its leading edgeen route.

    Consequently, songbirds experience a range of vegetation phenophases while migrating through North America, suggesting flexibility in their capacity to exploit variable resources in spring.

     
    more » « less
  5. Abstract

    Large carnivores often exhibit high survival rates in protected areas, whereas intentional and unintentional human‐caused mortality may be greater in adjacent areas. These patterns can result in source‐sink dynamics and limit population expansion beyond protected areas.

    We used telemetry data from 438 canids in 141 packs collected from 2002 to 2020 to evaluate mortality risk for wolves, coyotes, and admixed canids in a 3‐species hybrid zone in and adjacent to a large protected area in Ontario, Canada. The hybrid zone is occupied by most of the remaining eastern wolves (Canis lycaon), a rare, threatened species that hybridizes with sympatric eastern coyotes (C. latrans) and Great Lakes grey wolves (C. lupus).

    Within Algonquin Provincial Park (APP), annual human‐caused mortality from harvest and vehicles was low (0.06, 95% CI [0.03, 0.08]), whereas annual human‐caused mortality was higher in adjacent areas (0.31, 95% CI [0.25, 0.37]). Smaller protected areas implemented to help protect eastern wolves did not significantly reduce mortality. Eastern wolves survived poorly relative to other canids and dispersing canids survived poorly relative to residents. Mortality risk was greater when canids were closer to roads. Mortality risk was also increased or reduced by the strength of individual‐level selection or avoidance of roads relative to their availability, respectively.

    Our results provide a comprehensive evaluation of factors influencing spatial variation in mortality risk for canids to inform eastern wolf recovery efforts. Additionally, we developed a novel modelling approach for investigating the influence of resource selection on mortality risk, which highlighted that individual‐level responses to risk can strongly influence population‐level mortality patterns.

    Synthesis and applications. Despite being listed as ‘threatened’ under the Ontario Endangered Species Act, eastern wolves are still legally trapped and shot outside protected areas in central Ontario. Eastern wolves and dispersing canids survive poorly outside of APP, primarily from human‐caused mortality. These results, along with the apparent inadequacy of the smaller protected areas, suggest that expanding the threatened eastern wolf population outside APP is unlikely under current management conditions. Protecting eastern wolves from human‐caused mortality is complicated as it would require a harvest ban for all canids, including coyotes.

     
    more » « less