skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Prezygotic reproductive barriers in precopulatory behavior of tidepool copepod species
Abstract

Complexity in prezygotic mating behavior can contribute to the emergence of sexual incompatibility and reproductive isolation. In this study, we performed behavioral tests with two tidepool copepod species of the genus Tigriopus to explore the possibility of precopulatory behavioral isolation. We found that interspecific mating attempts failed prior to genital contact, and that this failure occurred at different behavioral steps between reciprocal pairings. Our results suggest that prezygotic barriers may exist at multiple points of the behavioral process on both male and female sides, possibly due to interspecific differences in mate-recognition cues used at those “checkpoints.” While many copepod species are known to show unique precopulatory mate-guarding behavior, the potential contribution of prezygotic behavioral factors to their isolation is not widely recognized. The pattern of sequential mate-guarding behaviors may have allowed the diversification of precopulatory communication and contributed to the evolutionary diversity of the Tigriopus copepods.

 
more » « less
NSF-PAR ID:
10439013
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
ISSN:
0014-3820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The role of hybridization as a formative process in evolution has received much attention in the past few decades. A particularly fascinating outcome of hybrid speciation is the formation of asexual hybrid species. The Amazon molly (Poecilia formosa) is such a hybrid and originated from aP. mexicanamother and aP. latipinnafather. Consequently, a heterospecific mating must have occurred leading to the Amazon molly, indicating a breakdown of any potential prezygotic isolation between parental species. Here we studied the female mate preferences of extantP. mexicanaandP. latipinnafrom several populations using standard binary choice tests with males of both sexual species that were matched for size.Poecilia mexicanaandP. latipinnacan be crossed in the lab, however, the offspring are not asexual, but sexual F1s. In our study, we generated F1s and tested their mating preferences with sexual males of bothP. mexicanaandP. latipinnaagainst F1males. Overall, our results show that in extantP. mexicanaandP. latipinnano female preference for conspecific males was detectable. Consequently, heterospecific matings are possible and not hindered by any apparent behavioral prezygotic isolation. If female preferences in these species were comparable around the time the Amazon molly originated as a hybrid species ca. 100,000 years ago, matings leading to hybrids would be very likely. F1females also have no discernable mating preferences for either sexual males or F1males. Such lack of prezygotic behavioral isolation could potentially lead to F2individuals, backcrosses, and introgression.

     
    more » « less
  2. Abstract

    Sexual selection can lead to rapid evolution of sexual traits and striking morphological diversity across taxa. In populations where competition for mates is intense, males sometimes evolve distinct behavioral strategies along with morphological differences that help them secure mating opportunities. Strong postcopulatory selection and differential resource allocation across male strategy type can result in strategy‐specific differences in sexual traits, such as sperm morphology, ejaculate components, and testis size. Some polymorphic species also have strategy‐specific genital morphology. Thus far, among vertebrates, this has only been observed in fish. Here, we present the first morphological description of the intromittant copulatory organ, the hemipenis, of the three mating types of the side‐blotched lizard,Uta stansburiana, from a population that exhibits alternative mating strategies. We found that the isometrically scaling hemipenis was shortest in the nonterritorial (yellow) morph that sneaks copulations with other males' mates. Although the hemipenes were generally the same shape across morphs, the usurping territorial (orange) morph had a significantly wider apical horn than the nonterritorial sneaker morph. Sneaker males also had smaller relative body masses than both the mate‐guarding (blue) morph and the usurper morph, and shorter tibia than the usurper morph. This study using a small sample of males suggests that strong sexual selection may drive genital trait differentiation across morphs within populations of terrestrial vertebrates.

     
    more » « less
  3. Abstract

    In sexually reproducing organisms, speciation involves the evolution of reproductive isolating mechanisms that decrease gene flow. Premating reproductive isolation, often the result of mate choice, is a major obstacle to gene flow between species because it acts earlier in the life cycle than other isolating barriers. While female choice is often considered the default mode in animal species, research in the butterfly genusHeliconius, a frequent subject of speciation studies, has focused on male mate choice.We studied mate choice byHeliconius cydnofemales by pairing them with either conspecific males or males of the closely related speciesHeliconius pachinus. Significantly more intraspecific trials than interspecific trials resulted in mating. Because male courtship rates did not differ between the species when we excluded males that never courted, we attribute this difference to female choice. Females also performed more acceptance behaviours towards conspecific males. Premating isolation between these two species thus entails both male and female mate choice, and female choice may be an important factor in the origin ofHeliconiusspecies.

     
    more » « less
  4. Jennions, Michael D. (Ed.)
    When two species meet in secondary contact, the production of low fitness hybrids may be prevented by the adaptive evolution of increased prezygotic isolation, a process known as reinforcement. Theoretical challenges to the evolution of reinforcement are generally cast as a coordination problem, i.e., “how can statistical associations between traits and preferences be maintained in the face of recombination?” However, the evolution of reinforcement also poses a potential conflict between mates. For example, the opportunity costs to hybridization may differ between the sexes or species. This is particularly likely for reinforcement based on postmating prezygotic (PMPZ) incompatibilities, as the ability to fertilize both conspecific and heterospecific eggs is beneficial to male gametes, but heterospecific mating may incur a cost for female gametes. We develop a population genetic model of interspecific conflict over reinforcement inspired by “gametophytic factors”, which act as PMPZ barriers among Zea mays subspecies. We demonstrate that this conflict results in the transient evolution of reinforcement—after females adaptively evolve to reject gametes lacking a signal common in conspecific gametes, this gamete signal adaptively introgresses into the other population. Ultimately, the male gamete signal fixes in both species, and isolation returns to pre-reinforcement levels. We interpret geographic patterns of isolation among Z . mays subspecies considering these findings and suggest when and how this conflict can be resolved. Our results suggest that sexual conflict over fertilization may pose an understudied obstacle to the evolution of reinforcement. 
    more » « less
  5. When gene flow accompanies speciation, recombination can decouple divergently selected loci and loci conferring reproductive isolation. This barrier to sympatric divergence disappears when assortative mating and disruptive selection involve the same “magic” trait. Although magic traits could be widespread, the relative importance of different types of magic traits to speciation remains unclear. Because body size frequently contributes to host adaptation and assortative mating in plant-feeding insects, we evaluated several magic trait predictions for this trait in a pair of sympatric Neodiprion sawfly species adapted to different pine hosts. A large morphological dataset revealed that sawfly adults from populations and species that use thicker-needled pines are consistently larger than those that use thinner-needled pines. Fitness data from recombinant backcross females revealed that egg size is under divergent selection between the preferred pines. Lastly, mating assays revealed strong size-assortative mating within and between species in three different crosses, with the strongest prezygotic isolation between populations that have the greatest interspecific size differences. Together, our data support body size as a magic trait in pine sawflies and possibly many other plant-feeding insects. Our work also demonstrates how intraspecific variation in morphology and ecology can cause geographic variation in the strength of prezygotic isolation. 
    more » « less