skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New Perspectives on Centering
Data matrix centering is an ever-present yet under-examined aspect of data analysis. Functional data analysis (FDA) often operates with a default of centering such that the vectors in one dimension have mean zero. We find that centering along the other dimension identifies a novel useful mode of variation beyond those familiar in FDA. We explore ambiguities in both matrix orientation and nomenclature. Differences between centerings and their potential interaction can be easily misunderstood. We propose a unified framework and new terminology for centering operations. We clearly demonstrate the intuition behind and consequences of each centering choice with informative graphics. We also propose a new direction energy hypothesis test as part of a series of diagnostics for determining which choice of centering is best for a data set. We explore the application of these diagnostics in several FDA settings.  more » « less
Award ID(s):
2113404 2210337 1916115
PAR ID:
10439036
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The New England Journal of Statistics in Data Science
ISSN:
2693-7166
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We provide an exact analysis of a class of randomized algorithms for solving overdetermined least-squares problems. We consider first-order methods, where the gradients are pre-conditioned by an approximation of the Hessian, based on a subspace embedding of the data matrix. This class of algorithms encompasses several randomized methods among the fastest solvers for leastsquares problems. We focus on two classical embeddings, namely, Gaussian projections and subsampled randomized Hadamard transforms (SRHT). Our key technical innovation is the derivation of the limiting spectral density of SRHT embeddings. Leveraging this novel result, we derive the family of normalized orthogonal polynomials of the SRHT density and we find the optimal pre-conditioned first-order method along with its rate of convergence. Our analysis of Gaussian embeddings proceeds similarly, and leverages classical random matrix theory results. In particular, we show that for a given sketch size, SRHT embeddings exhibits a faster rate of convergence than Gaussian embeddings. Then, we propose a new algorithm by optimizing the computational complexity over the choice of the sketching dimension. To our knowledge, our resulting algorithm yields the best known complexity for solving least-squares problems with no condition number dependence. 
    more » « less
  2. We propose a new randomized optimization method for high-dimensional problems which can be seen as a generalization of coordinate descent to random subspaces. We show that an adaptive sampling strategy for the random subspace significantly outperforms the oblivious sampling method, which is the common choice in the recent literature. The adaptive subspace can be efficiently generated by a correlated random matrix ensemble whose statistics mimic the input data. We prove that the improvement in the relative error of the solution can be tightly characterized in terms of the spectrum of the data matrix, and provide probabilistic upper-bounds. We then illustrate the consequences of our theory with data matrices of different spectral decay. Extensive experimental results show that the proposed approach offers significant speed ups in machine learning problems including logistic regression, kernel classification with random convolution layers and shallow neural networks with rectified linear units. Our analysis is based on convex analysis and Fenchel duality, and establishes connections to sketching and randomized matrix decompositions. 
    more » « less
  3. We propose a new method to estimate Wasserstein distances and optimal transport plans between two probability distributions from samples in high dimension. Unlike plug-in rules that simply replace the true distributions by their empirical counterparts, our method promotes couplings with low transport rank, a new structural assumption that is similar to the nonnegative rank of a matrix. Regularizing based on this assumption leads to drastic improvements on high-dimensional data for various tasks, including domain adaptation in single-cell RNA sequencing data. These findings are supported by a theoretical analysis that indicates that the transport rank is key in overcoming the curse of dimensionality inherent to data-driven optimal transport. 
    more » « less
  4. Dalalyan, Aynak (Ed.)
    Topic models have become popular tools for dimension reduction and exploratory analysis of text data which consists in observed frequencies of a vocabulary of p words in n documents, stored in a p×n matrix. The main premise is that the mean of this data matrix can be factorized into a product of two non-negative matrices: a p×K word-topic matrix A and a K×n topic-document matrix W. This paper studies the estimation of A that is possibly element-wise sparse, and the number of topics K is unknown. In this under-explored context, we derive a new minimax lower bound for the estimation of such A and propose a new computationally efficient algorithm for its recovery. We derive a finite sample upper bound for our estimator, and show that it matches the minimax lower bound in many scenarios. Our estimate adapts to the unknown sparsity of A and our analysis is valid for any finite n, p, K and document lengths. Empirical results on both synthetic data and semi-synthetic data show that our proposed estimator is a strong competitor of the existing state-of-the-art algorithms for both non-sparse A and sparse A, and has superior performance is many scenarios of interest. 
    more » « less
  5. null (Ed.)
    Abstract In many dimension reduction problems in statistics and machine learning, such as principal component analysis, canonical correlation analysis, independent component analysis, and sufficient dimension reduction, it is important to determine the dimension of the reduced predictor, which often amounts to estimating the rank of a matrix. This problem is called order determination. In this paper, we propose a novel and highly effective order-determination method based on the idea of predictor augmentation. We show that, if we augment the predictor by an artificially generated random vector, then the part of the eigenvectors of the matrix induced by the augmentation display a pattern that reveals information about the order to be determined. This information, when combined with the information provided by the eigenvalues of the matrix, greatly enhances the accuracy of order determination. 
    more » « less