skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide

Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact Statement

    People plant, remove, and manage urban vegetation in cities for varying purposes and to varying extents. The direct manipulation of plants affects the benefits people receive from plants. In synthesizing several studies of urban biodiversity in Los Angeles, we find that cultivated plants differ from those in remnant natural areas. This highlights the importance of studying cultivated plants in cities, which is crucial for the design and planning of sustainable cities. Residents have created a new urban biome in Los Angeles, and this has consequences for associated organisms, ultimately resulting in a responsibility for society to determine what type of biome we wish to create.


    Urbanization is a large driver of biodiversity globally. Within cities, urban trees, gardens, and residential yards contribute extensively to plant biodiversity, although the consequences and mechanisms of plant cultivation for biodiversity are uncertain.

    We used Los Angeles, California, USA as a case study for investigating plant diversity in cultivated areas. We synthesized datasets quantifying the diversity of urban trees, residential yards, and community gardens in Los Angeles, the availability of plants from nurseries, and residents’ attitudes about plant attributes.

    Cultivated plant diversity was drastically different from remnant natural areas; compared to remnant natural areas, cultivated areas contained more exotic species, more than double the number of plant species, and turnover in plant functional trait distributions. In cultivated areas, most plants were intentionally planted and dominated by exotic species planted for ornamental purposes. Most tree species sampled in Los Angeles were available for sale in local nurseries. Residents’ preferences for specific plant traits were correlated with the trait composition of the plant community, suggesting cultivated plant communities at least partially reflect resident preferences.

    Our findings demonstrate the importance of cultivated species in a diverse megacity that are driven in part through commercial distribution. The cultivation of plants in Los Angeles greatly increases regional plant biodiversity through changes in species composition and functional trait distributions. The pervasive presence of cultivated species likely has many consequences for residents and the ecosystem services they receive compared with unmanaged or remnant urban areas.

    more » « less
  2. Abstract Context

    There is concern that urbanization threatens bees, a diverse group of economic importance. The impact of urbanization on bees is likely mediated by their phenotypic traits.


    We examine how urban cover and resource availability at local and landscape scales influences both species taxonomic and functional diversity in bees.


    We used a combination of aerial netting and pan traps across six sampling periods to collect wild bees in 18 urban gardens spanning more than 125 km of the California central coast. We identified 3537 specimens to genus and, when possible, to species to obtain species richness and abundance at each site. For each species we measured a suite of bee traits, including body size, sociality, nesting location, nesting behavior, pollen-carrying structure, parasitism, and lecty.


    We found that increased garden size was positively associated with bee species richness and abundance. Somewhat counterintuitively, we found that urban cover surrounding gardens (2 km) was positively associated with bee species richness. Urban cover was also associated with the prevalence of certain bee traits, such as bees that excavate nests over those who rent, and bees with non-corbiculate structures. We suggest that urban habitats such as gardens can host a high number of bee species, but urbanization selects for species with specific traits.


    These findings illustrate that local and landscape features both influence bee abundance, species richness, and the frequency of specific traits. We highlight the importance of trait-based approaches for assessing biodiversity in urban landscapes, and suggest conceptualizing urbanization as a process of habitat change rather than habitat loss.

    more » « less
  3. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.


    Great Basin ecoregion, western North America.


    Rodents and shrews.


    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.


    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

    more » « less
  4. Abstract Aim

    Nutrient enrichment is associated with plant invasions and biodiversity loss. Functional trait advantages may predict the ascendancy of invasive plants following nutrient enrichment but this is rarely tested. Here, we investigate (a) whether dominant native and non‐native plants differ in important morphological and physiological leaf traits, (b) how their traits respond to nutrient addition, and (c) whether responses are consistent across functional groups.


    Australia, Europe, North America and South Africa.

    Time period


    Major taxa studied

    Graminoids and forbs.


    We focused on two types of leaf traits connected to resource acquisition: morphological features relating to light‐foraging surfaces and investment in tissue (specific leaf area, SLA) and physiological features relating to internal leaf chemistry as the basis for producing and utilizing photosynthate. We measured these traits on 503 leaves from 151 dominant species across 27 grasslands on four continents. We used an identical nutrient addition treatment of nitrogen (N), phosphorus (P) and potassium (K) at all sites. Sites represented a broad range of grasslands that varied widely in climatic and edaphic conditions.


    We found evidence that non‐native graminoids invest in leaves with higher nutrient concentrations than native graminoids, particularly at sites where native and non‐native species both dominate. We found little evidence that native and non‐native forbs differed in the measured leaf traits. These results were consistent in natural soil fertility levels and nutrient‐enriched conditions, with dominant species responding similarly to nutrient addition regardless of whether they were native or non‐native.

    Main conclusions

    Our work identifies the inherent physiological trait advantages that can be used to predict non‐native graminoid establishment, potentially because of higher efficiency at taking up crucial nutrients into their leaves. Most importantly, these inherent advantages are already present at natural soil fertility levels and are maintained following nutrient enrichment.

    more » « less

    Heat stress imposes an important physiological constraint on native plant species—one that will only worsen with human-caused climate change. Indeed, rising temperatures have already contributed to large-scale plant mortality events across the globe. These impacts may be especially severe in cities, where the urban heat island effect amplifies climate warming. Understanding how plant species will respond physiologically to rising temperatures and how these responses differ among plant functional groups is critical for predicting future biodiversity scenarios and making informed land management decisions. In this study, we evaluated the effects of elevated temperatures on a functionally and taxonomically diverse group of woody native plant species in a restored urban nature preserve in southern California using measurements of chlorophyll fluorescence as an indicator of leaf thermotolerance. Our aim was to determine if species’ traits and drought strategies could serve as useful predictors of thermotolerance. We found that leaf thermotolerance differed among species with contrasting drought strategies, and several leaf-level functional traits were significant predictors of thermotolerance thresholds. Drought deciduous species with high specific leaf area, high rates of transpiration and low water use efficiency were the most susceptible to heat damage, while evergreen species with sclerophyllous leaves, high relative water content and high water use efficiency maintained photosynthetic function at higher temperatures. While these native shrubs and trees are physiologically equipped to withstand relatively high temperatures in this Mediterranean-type climate, hotter conditions imposed by climate change and urbanization may exceed the tolerance thresholds of many species. We show that leaf functional traits and plant drought strategies may serve as useful indicators of species’ vulnerabilities to climate change, and this information can be used to guide restoration and conservation in a warmer world.

    more » « less