The wall shear stress (WSS) exerted by blood flowing through microvascular capillaries is an established driver of new blood vessel growth, or angiogenesis. Such adaptations are central to many physiological processes in both health and disease, yet three-dimensional (3D) WSS characteristics in real angiogenic microvascular networks are largely unknown. This marks a major knowledge gap because angiogenesis, naturally, is a 3D process. To advance current understanding, we model 3D red blood cells (RBCs) flowing through rat angiogenic microvascular networks using state-of-the-art simulation. The high-resolution fluid dynamics reveal 3D WSS patterns occurring at sub-endothelial cell (EC) scales that derive from distinct angiogenic morphologies, including microvascular loops and vessel tortuosity. We identify the existence of WSS hot and cold spots caused by angiogenic surface shapes and RBCs, and notably enhancement of low WSS regions by RBCs. Spatiotemporal characteristics further reveal how fluctuations follow timescales of RBC “footprints.” Altogether, this work provides a new conceptual framework for understanding how shear stress might regulate EC dynamics in vivo.
This content will become publicly available on July 17, 2024
- Award ID(s):
- 1913093
- NSF-PAR ID:
- 10439361
- Editor(s):
- Beard, Daniel A
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 19
- Issue:
- 7
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1011241
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The margination and adhesion of micro-particles (MPs) have been extensively investigated separately, due to their important applications in the biomedical field. However, the cascade process from margination to adhesion should play an important role in the transport of MPs in blood flow. To the best of our knowledge, this has not been explored in the past. Here we numerically study the margination behaviour of elastic MPs to blood vessel walls under the interplay of their deformability and adhesion to the vessel wall. We use the lattice Boltzmann method and molecular dynamics to solve the fluid dynamics and particle dynamics (including red blood cells (RBCs) and elastic MPs) in blood flow, respectively. Additionally, a stochastic ligand–receptor binding model is employed to capture the adhesion behaviours of elastic MPs on the vessel wall. Margination probability is used to quantify the localization of elastic MPs at the wall. Two dimensionless numbers are considered to govern the whole process: the capillary number $Ca$ , denoting the ratio of viscous force of fluid flow to elastic interfacial force of MP, and the adhesion number $Ad$ , representing the ratio of adhesion strength to viscous force of fluid flow. We systematically vary them numerically and a margination probability contour is obtained. We find that there exist two optimal regimes favouring high margination probability on the plane $Ca{-}Ad$ . The first regime, namely region I, is that with high adhesion strength and moderate particle stiffness; the other one, region II, has moderate adhesion strength and large particle stiffness. We conclude that the existence of optimal regimes is governed by the interplay of particle deformability and adhesion strength. The corresponding underlying mechanism is also discussed in detail. There are three major factors that contribute to the localization of MPs: (i) near-wall hydrodynamic collision between RBCs and MPs; (ii) deformation-induced migration due to the presence of the wall; and (iii) adhesive interaction between MPs and the wall. Mechanisms (i) and (iii) promote margination, while (ii) hampers margination. These three factors perform different roles and compete against each other when MPs are located in different regions of the flow channel, i.e. near-wall region. In optimal region I, adhesion outperforms deformation-induced migration; and in region II, the deformation-induced migration is small compared to the coupling of near-wall hydrodynamic collision and adhesion. The finding of optimal regimes can help the understanding of localization of elastic MPs at the wall under the adhesion effect in blood flow. More importantly, our results suggest that softer MP or stronger adhesion is not always the best choice for the localization of MPs.more » « less
-
The endothelium, composed of a single layer of endothelial cells, is the innermost lining of vessels, acting as the interface between blood and the arterial wall. “Endothelial dysfunction” is defined as reduction or loss of bioavailability of endothelial-derived nitric oxide (NO), a condition that precedes or accompanies several cardiovascular pathologies associated with aging, such as atherosclerosis. [1] [2] NO plays an important role in regulating vascular tone and maintaining vascular homeostasis as a vasodilator. Thus, we hypothesize that decreased NO production may induce collagen fiber reorientation and increased collagen production, to shift load from smooth muscle cells to the extracellular matrix, eventually leading to vascular remodeling. The aim of this project is to study the impact of NO deficiency on hemodynamic parameters, collagen content, and collagen fiber orientation during age-related vascular remodeling using a mouse model.more » « less
-
The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency.
-
Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.