Pervasive epizootic events have had a significant impact on marine invertebrates throughout the Caribbean, leading to severe population declines and consequential ecological implications. One such event was the regional collapse of herbivory, partly caused by theDiadema antillarummortality event in 1983–84, resulting in a trophic cascade and altering the structure of reef communities. Consequently, there was a notable decrease in coral recruitment and an increase in the coverage of macroalgae. Nearly four decades later, in early 2022, the Caribbean basin experienced another widespread mass mortality event, further reducing the populations ofD. antillarum. To assess the effects of this recent mortality event on the current demographics ofD. antillarum, we surveyed eight populations along the eastern, northeastern, northern, and northwestern coast of Puerto Rico from May to July 2022, estimating their population density, size distribution, and disease prevalence. Additionally, the study compared these population parameters with data from four sites previously surveyed in 2012 and 2017 to understand the impact of the recent mortality event. The survey conducted in 2022 showed varying population densities at the surveyed reefs. Some populations exhibited mean densities of nearly one individual per square meter, while others had extremely low or no living individuals per square meter. The four populations with the highest density showed no evidence of disease, whereas the four populations with the lowestD. antillarumdensities exhibited moderate to high disease prevalence. However, when considering all sites, the estimated disease prevalence remained below 5%. Nevertheless, the comparison with data from 2012 and 2017 indicated that the recent mortality event had a negative impact onD. antillarumdemographics at multiple sites, as the densities in 2022 were reduced by 60.19% compared to those from the previous years. However, it is still too early to determine the severity of this new mortality event compared to the 1983–84 mortality event. Therefore, it is imperative to continue monitoring these populations.
more »
« less
An apicomplexan parasite drives the collapse of the bay scallop population in New York
Abstract The bay scallop, Argopecten irradians , represents a commercially, culturally and ecologically important species found along the United States’ Atlantic and Gulf coasts. Since 2019, scallop populations in New York have been suffering large-scale summer mortalities resulting in 90–99% reduction in biomass of adult scallops. Preliminary investigations of these mortality events showed 100% prevalence of an apicomplexan parasite infecting kidney tissues. This study was designed to provide histological, ultrastructural and molecular characteristics of a non-described parasite, member of the newly established Marosporida clade (Apicomplexa) and provisionally named BSM (Bay Scallop Marosporida). Molecular diagnostics tools (quantitative PCR, in situ hybridization) were developed and used to monitor disease development. Results showed that BSM disrupts multiple scallop tissues including kidney, adductor muscle, gill, and gonad. Microscopy observations allowed the identification of both intracellular and extracellular stages of the parasite. Field surveys demonstrated a strong seasonal signature in disease prevalence and intensity, as severe cases and mortality increase as summer progresses. These results strongly suggest that BSM infection plays a major role in the collapse of bay scallop populations in New York. In this framework, BSM may synergistically interact with stressful environmental conditions to impair the host and lead to mortality.
more »
« less
- Award ID(s):
- 2026358
- PAR ID:
- 10439463
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The spread of parasites and the emergence of disease are currently threatening global biodiversity and human welfare. To address this threat, we need to better understand those factors that determine parasite persistence and prevalence. It is known that dispersal is central to the spatial dynamics of host–parasite systems. Yet past studies have typically assumed that dispersal is a species-level constant, despite a growing body of empirical evidence that dispersal varies with ecological context, including the risk of infection and aspects of host state such as infection status (parasite-dependent dispersal; PDD). Here, we develop a metapopulation model to understand how different forms of PDD shape the prevalence of a directly transmitted parasite. We show that increasing host dispersal rate can increase, decrease or cause a non-monotonic change in regional parasite prevalence, depending on the type of PDD and characteristics of the host–parasite system (transmission rate, virulence, and dispersal mortality). This result contrasts with previous studies with parasite-independent dispersal which concluded that prevalence increases with host dispersal rate. We argue that accounting for host dispersal responses to parasites is necessary for a complete understanding of host–parasite dynamics and for predicting how parasite prevalence will respond to changes such as human alteration of landscape connectivity. This article is part of the theme issue ‘Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics’.more » « less
-
ABSTRACT Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer— cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam (Mya arenaria) populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due toMya arenariaBTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast. In 2022, we collected soft-shell clams from several sites in Puget Sound, Washington, USA, and unexpectedly found high prevalence of BTN in two sites (Triangle Cove on Camano Island and near Stanwood in South Skagit Bay). Prevalence of BTN increased in subsequent years, reaching >75% in both sites in 2024, while it was not observed in other sites, suggesting the early stages of a severe disease outbreak following recent introduction. We observed that these cancer cells contain several somatic transposing insertion sites found only in the USA-sublineage of MarBTN, showing that it likely was recently transplanted from New England to this location. We then developed a sensitive environmental DNA (eDNA) assay, using qPCR to target somatic mutations in the MarBTN mitogenome, and showed that MarBTN can be detected in seawater at Triangle Cove, as well as several kilometers outside of the cove. We then used this assay to survey 50 sites throughout Puget Sound, confirming that the disease can be detected at high levels at Triangle Cove and South Skagit Bay, and showing that it extends beyond these known sites. However, while normal soft-shell clam mtDNA was widely detected, MarBTN was undetectable throughout most of Puget Sound and currently remains limited to the South Skagit Bay area and north Port Susan. These results identify a previously unknown severe outbreak of a transmissible cancer due to long-distance transplantation of disease from another ocean, and they demonstrate the utility of eDNA methods to track the spread of BTN through the environment.more » « less
-
Abstract The relationship between infection prevalence and host age is informative because it can reveal processes underlying disease dynamics. Most prior work has assumed that age‐prevalence curves are shaped by infection rates, host immunity and/or infection‐induced mortality. Interactions between parasites within a host have largely been overlooked as a source of variation in age‐prevalence curves.We used field survey data and models to examine the role of interspecific interactions between parasites in shaping age‐prevalence curves. The empirical dataset included quantification of parasite infection prevalence for eight co‐occurring trematodes in over 15,000 snail hosts. We characterized age‐prevalence curves for each taxon, examined how they changed over space in relation to co‐occurring trematodes and tested whether the shape of the curves aligned with expectations for the frequencies of coinfections by two taxa in the same host. The models explored scenarios that included negative interspecific interactions between parasites, variation in the force‐of‐infection (FOI) and infection‐induced mortality that varied with host age, which were mechanisms hypothesized to be important in the empirical dataset.In the empirical dataset, four trematode parasites had monotonic increasing age‐prevalence curves and four had unimodal age‐prevalence curves. Some of the curves remained consistent in shape in relation to the prevalence of other potentially interacting trematodes, while some shifted from unimodal to monotonic increasing, suggesting release from negative interspecific interactions. The most common taxa with monotonic increasing curves had lower co‐infection frequencies than expected, suggesting they were competitively dominant. Taxa with unimodal curves had coinfection frequencies that were closer to those expected by chance.The model showed that negative interspecific interactions between parasites can cause a unimodal age‐prevalence curve in the subordinate taxon. Increases in the FOI and/or infection‐induced mortality of the dominant taxon cause shifts in the peak prevalence of the subordinate taxon to a younger host age. Infection‐induced mortality that increased with host age was the only scenario that caused a unimodal curve in the dominant taxon.Results indicated that negative interspecific interactions between parasites contributed to variation in the shape of age‐prevalence curves across parasite taxa and support the growing importance of incorporating interactions between parasites in explaining population‐level patterns of host infection over space and time. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
null (Ed.)A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host ( Pseudacris regilla ) and infection by a pathogenic trematode ( Ribeiroia ondatrae ) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host–parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate.more » « less
An official website of the United States government

