- Award ID(s):
- 1751601
- PAR ID:
- 10439519
- Date Published:
- Journal Name:
- International Journal of Wildland Fire
- Volume:
- 32
- Issue:
- 7
- ISSN:
- 1049-8001
- Page Range / eLocation ID:
- 1162 to 1173
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Di Luca, Marco (Ed.)Recently, tick-borne illnesses have been trending upward and are an increasing source of risk to people’s health in the United States. This is due to range expansion in tick habitats as a result of climate change. Thus, it is imperative to find a practical and cost-efficient way of managing tick populations. Prescribed burns are a common form of land management that can be cost-efficient if properly managed and can be applied across large amounts of land. In this study, we present a compartmental model for ticks carrying Lyme disease and uniquely incorporate the effects of prescribed fire using an impulsive system to investigate the effects of prescribed fire intensity (high and low) and the duration between burns. Our study found that fire intensity has a larger impact in reducing tick population than the frequency between burns. Furthermore, burning at high intensity is preferable to burning at low intensity whenever possible, although high-intensity burns may be unrealistic due to environmental factors. Annual burns resulted in the most significant reduction in infectious nymphs, which are the primary carriers of Lyme disease.more » « less
-
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion.more » « less
-
Supriatna, Asep Kuswandi (Ed.)Lyme disease is one of the most prominent tick-borne diseases in the United States, and prevalence of the disease has been steadily increasing over the past several decades due to a number of factors, including climate change. Methods for control of the disease have been considered, one of which is prescribed burning. In this paper, the effects of prescribed burns on the abundance of ticks present in a spatial domain are assessed. A spatial stage-structured tick-host model with an impulsive differential equation system is developed to simulate the effect that controlled burning has on tick populations. Subsequently, a global sensitivity analysis is performed to evaluate the effect of various model parameters on the prevalence of infectious nymphs. Results indicate that while ticks can recover relatively quickly following a burn, yearly, high-intensity prescribed burns can reduce the prevalence of ticks in and around the area that is burned. The use of prescribed burns in preventing the establishment of ticks into new areas is also explored, and it is observed that frequent burning can slow establishment considerably.more » « less
-
Abstract In this article, we respond to a critique of our earlier work examining the USDA Forest Service’s (USFS’s) planning processes. We appreciate that our critics introduce new data to the discussion of USFS planning. Further data integration is a promising path to developing a deeper understanding of agency activities. Our critics’ analysis largely supports our original claims. Our most important difference is in our conceptualization of the planning process’s relationship to agency goals. Although our critics conceive of the USFS’s legally prescribed planning processes as a barrier to land management activities, we believe that public comment periods, scientific analysis, and land management activities are tools the agency uses to achieve its goals of managing land in the public interest.
Study Implications: The USDA Forest Service’s current planning process has been critiqued as a barrier to accomplishing land management activities, but it is also an important tool for insuring science-based management and understanding public values and interests that the agency is legally bound to uphold.
-
Drone based wildfire detection and modeling methods enable high-precision, real-time fire monitoring that is not provided by traditional remote fire monitoring systems, such as satellite imaging. Precise, real-time information enables rapid, effective wildfire intervention and management strategies. Drone systems’ ease of deployment, omnidirectional maneuverability, and robust sensing capabilities make them effective tools for early wildfire detection and evaluation, particularly so in environments that are inconvenient for humans and/or terrestrial vehicles. Development of emerging drone-based fire monitoring systems has been inhibited by a lack of well-annotated, high quality aerial wildfire datasets, largely as a result of UAV flight regulations for prescribed burns and wildfires. The included dataset provides a collection of side-by-side infrared and visible spectrum video pairs taken by drones during an open canopy prescribed fire in Northern Arizona in 2021. The frames have been classified by two independent classifiers with two binary classifications. The Fire label is applied when the classifiers visually observe indications of fire in either RGB or IR frame for each frame pair. The Smoke label is applied when the classifiers visually estimate that at least 50% of the RGB frame is filled with smoke. To provide additional context to the main dataset’s aerial imagery, the provided supplementary dataset includes weather information, the prescribed burn plan, a geo-referenced RGB point cloud of the preburn area, an RGB orthomosaic of the preburn area, and links to further information.more » « less