skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hantavirus in Panama: Twenty Years of Epidemiological Surveillance Experience
Twenty years have passed since the emergence of hantavirus zoonosis in Panama at the beginning of this millennium. We provide an overview of epidemiological surveillance of hantavirus disease (hantavirus pulmonary syndrome and hantavirus fever) during the period 1999–2019 by including all reported and confirmed cases according to the case definition established by the health authority. Our findings reveal that hantavirus disease is a low-frequency disease, affecting primarily young people, with a relatively low case-fatality rate compared to other hantaviruses in the Americas (e.g., ANDV and SNV). It presents an annual variation with peaks every 4–5 years and an interannual variation influenced by agricultural activities. Hantavirus disease is endemic in about 27% of Panama, which corresponds to agroecological conditions that favor the population dynamics of the rodent host, Oligoryzomys costaricensis and the virus (Choclo orthohantavirus) responsible for hantavirus disease. However, this does not rule out the existence of other endemic areas to be characterized. Undoubtedly, decentralization of the laboratory test and dissemination of evidence-based surveillance guidelines and regulations have standardized and improved diagnosis, notification at the level of the primary care system, and management in intensive care units nationwide.  more » « less
Award ID(s):
2155222
PAR ID:
10439559
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Viruses
Volume:
15
Issue:
6
ISSN:
1999-4915
Page Range / eLocation ID:
1395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Costa Rican pygmy rice rat (Oligoryzomys costaricensis) is the primary reservoir of Choclo orthohantavirus (CHOV), the causal agent of hantavirus disease, pulmonary syndrome, and fever in humans in Panama. Since the emergence of CHOV in early 2000, we have systematically sampled and archived rodents from >150 sites across Panama to establish a baseline understanding of the host and virus, producing a permanent archive of holistic specimens that we are now probing in greater detail. We summarize these collections and explore preliminary habitat/virus associations to guide future wildlife surveillance and public health efforts related to CHOV and other zoonotic pathogens. Host sequences of the mitochondrial cytochrome b gene form a single monophyletic clade in Panama, despite wide distribution across Panama. Seropositive samples were concentrated in the central region of western Panama, consistent with the ecology of this agricultural commensal and the higher incidence of CHOV in humans in that region. Hantavirus seroprevalence in the pygmy rice rat was >15% overall, with the highest prevalence in agricultural areas (21%) and the lowest prevalence in shrublands (11%). Host–pathogen distribution, transmission dynamics, genomic evolution, and habitat affinities can be derived from the preserved samples, which include frozen tissues, and now provide a foundation for expanded investigations of orthohantaviruses in Panama. 
    more » « less
  2. Lau, Eric HY (Ed.)
    Foot and Mouth Disease (FMD) affects cloven-hoofed animals globally and has become a major economic burden for many countries around the world. Countries that have had recent FMD outbreaks are prohibited from exporting most meat products; this has major economic consequences for farmers in those countries, particularly farmers that experience outbreaks or are near outbreaks. Reducing the number of FMD outbreaks in countries where the disease is endemic is an important challenge that could drastically improve the livelihoods of millions of people. As a result, significant effort is expended on surveillance; but there is a concern that uninformative surveillance strategies may waste resources that could be better used on control management. Rapid detection through sentinel surveillance may be a useful tool to reduce the scale and burden of outbreaks. In this study, we use an extensive outbreak and cattle shipment network dataset from the Republic of Türkiye to retrospectively test three possible strategies for sentinel surveillance allocation in countries with endemic FMD and minimal existing FMD surveillance infrastructure that differ in their data requirements: ranging from low to high data needs, we allocate limited surveillance to [1] farms that frequently send and receive shipments of animals (Network Connectivity), [2] farms near other farms with past outbreaks (Spatial Proximity) and [3] farms that receive many shipments from other farms with past outbreaks (Network Proximity). We determine that all of these surveillance methods find a similar number of outbreaks – 2-4.5 times more outbreaks than were detected by surveying farms at random. On average across surveillance efforts, the Network Proximity and Network Connectivity methods each find a similar number of outbreaks and the Spatial Proximity method always finds the fewest outbreaks. Since the Network Proximity method does not outperform the other methods, these results indicate that incorporating both cattle shipment data and outbreak data provides only marginal benefit over the less data-intensive surveillance allocation methods for this objective. We also find that these methods all find more outbreaks when outbreaks are rare. This is encouraging, as early detection is critical for outbreak management. Overall, since the Spatial Proximity and Network Connectivity methods find a similar proportion of outbreaks, and are less data-intensive than the Network Proximity method, countries with endemic FMD whose resources are constrained could prioritize allocating sentinels based on whichever of those two methods requires less additional data collection. 
    more » « less
  3. Abstract In North America, the rodent‐borne hantavirus pulmonary syndrome is predominantly caused by the Sin Nombre virus, typically associated with the deer mousePeromyscus maniculatus. Utilizing data from the National Ecological Observatory Network (NEON) hantavirus program, we assessed factors that may influence the spatial and temporal distribution of hantavirus in rodent populations across the United States. Between 2014 and 2019, the NEON hantavirus program conducted 104,379 small mammal captures and collected 14,004 blood samples from 49 species at 45 field sites. Our study identified 296 seropositive samples across 15 rodent species, including 8Peromyscusspecies. We describe six new species with hantavirus seropositive samples not previously reported as hantavirus hosts. The highest number of seropositive samples was obtained fromPe. maniculatus(n = 116; 2.9% seroprevalence), followed byPeromyscus leucopus(n = 96; 2.8%) andMicrotus pennsylvanicus(n = 33; 4.2%). Hantavirus seroprevalence showed an uneven spatial distribution, with the highest seroprevalence found in Virginia (7.8%, 99 seropositive samples), Colorado (5.7%,n = 37), and Texas (4.8%,n = 19). Hantavirus seropositive samples were obtained from 32 sites, 10 of which presented seropositive samples in species other thanPe. maniculatusorPe. leucopus. Seroprevalence was inconsistent across years but showed intra‐annual bimodal trends, and inPe. maniculatusandPe. leucopus, the number of captures correlated with seroprevalence in the following months. Seroprevalence was higher in adult males, with only one seropositive sample obtained from a juvenilePeromyscus truei. Higher body mass, presence of scrotal testes, and nonpregnant status were associated with higher seropositivity. The NEON dataset, derived from a multiyear and structured surveillance system, revealed the extensive distribution of hantavirus across broad taxonomic and environmental ranges. Future research should consider winter season surveillance and continued analyses of stored samples for a comprehensive spatiotemporal study of hantavirus circulation in wildlife. Global changes are expected to affect the dynamics of rodent populations by affecting their availability of resources and demography and, consequently, may modify transmission rates of rodent‐borne zoonotic pathogens such as hantavirus. This study can be considered a baseline to assess hantavirus patterns across host taxa, geographies, and seasons in the United States. 
    more » « less
  4. Abstract Surveillance and monitoring of zoonotic pathogens is key to identifying and mitigating emerging public health threats. Surveillance is often designed to be taxonomically targeted or systematically dispersed across geography, however, those approaches may not represent the breadth of environments inhabited by a host, vector, or pathogen, leaving significant gaps in our understanding of pathogen dynamics in their natural reservoirs and environments. As a case study on the design of pathogen surveillance programs, we assess how well 20 years of small mammal surveys in Panamá have sampled available environments and propose a multistep approach to selecting survey localities in the future. We use >8,000 georeferenced mammal specimen records, collected as part of a long-term hantavirus surveillance program, to test the completeness of country-wide environmental sampling. Despite 20 years of surveillance, our analyses identified a few key environmental sampling gaps. To refine surveillance strategies, we selected a series of core historically sampled localities, supplemented with additional environmentally distinct sites to more completely represent Panama’s environments. Based on lessons learned through decades of surveillance, we propose a series of recommendations to improve strategic sampling for zoonotic pathogen surveillance. 
    more » « less
  5. ABSTRACT Hantaviruses are globally distributed zoonotic pathogens capable of causing fatal disease in humans. Addressing the risk of hantavirus spillover from animal reservoirs to humans requires identifying the local reservoirs (usually rodents and other small mammals) and the predictors of infection, such as habitat characteristics and human exposure. We screened a collection of 1663 terrestrial small mammals and 227 bats for hantavirus RNA, comprised of native and non‐native species from northeastern Madagascar, trapped over 5 successive years. We specifically investigated the influence of diverse habitat types: villages, agricultural fields, regrowth areas, secondary and semi‐intact forests on infection with hantaviruses. We detected Hantavirus RNA closely related to the previously described Anjozorobe virus in 9.5% ofRattus rattussampled, with an absence of detection in other species. Land‐use had a complex impact on hantavirus infections: intensive land‐use positively correlated with the abundance ofR. rattusand the averageR. rattusbody size varied between habitats. Larger individuals had a higher probability of infection, regardless of sex. Thus, villages and pristine forests which host the smallest, and hence, least infected rats, represent the lowest risk for hantavirus exposure to people while flooded rice fields which were home to the largest rats, and subsequently most infected rats, represent the greatest exposure risk. These findings provide new insights into the relationship between rat ecology and the gradients of hantavirus exposure risk for farmers in northeastern Madagascar as they work in different land‐use types. 
    more » « less