Abstract We present optical observations and analysis of the bright type Iax supernova SN 2020udy hosted by NGC 0812. The evolution of the light curve of SN 2020udy is similar to that of other bright type Iax SNe. Analytical modeling of the quasi-bolometric light curves of SN 2020udy suggests that 0.08 ± 0.01M⊙of56Ni would have been synthesized during the explosion. The spectral features of SN 2020udy are similar to those of the bright members of type Iax class, showing a weak Siiiline. The late-time spectral sequence is mostly dominated by iron group elements with broad emission lines. Abundance tomography modeling of the spectral time series of SN 2020udy usingTARDISindicates stratification in the outer ejecta; however, to confirm this, spectral modeling at a very early phase is required. After maximum light, uniform mixing of chemical elements is sufficient to explain the spectral evolution. Unlike in the case of normal type Ia SNe, the photospheric approximation remains robust until +100 days, requiring an additional continuum source. Overall, the observational features of SN 2020udy are consistent with the deflagration of a carbon–oxygen white dwarf.
more »
« less
Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt
Abstract Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. usingTARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.
more »
« less
- Award ID(s):
- 1911225
- PAR ID:
- 10439623
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 951
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 67
- Size(s):
- Article No. 67
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present optical photometric and spectroscopic analysis of a Type Iax supernova (SN) 2020rea situated at the brighter luminosity end of Type Iax supernovae (SNe). The light curve decline rate of SN 2020rea is Δm15(g) = 1.31 ± 0.08 mag which is similar to SNe 2012Z and 2005hk. Modelling the pseudo-bolometric light curve with a radiation diffusion model yields a mass of 56Ni of 0.13 ± 0.01 M⊙ and an ejecta mass of 0.77$$^{+0.11}_{-0.21}$$ M⊙. Spectral features of SN 2020rea during the photospheric phase show good resemblance with SN 2012Z. TARDIS modelling of the early spectra of SN 2020rea reveals a dominance of Iron Group Elements (IGEs). The photospheric velocity of the Si ii line around maximum for SN 2020rea is ∼ 6500 km s−1 which is less than the measured velocity of the Fe ii line and indicates significant mixing. The observed physical properties of SN 2020rea match with the predictions of pure deflagration model of a Chandrasekhar mass C–O white dwarf. The metallicity of the host galaxy around the SN region is 12 + log(O/H) = 8.56 ± 0.18 dex which is similar to that of SN 2012Z.more » « less
-
In this study, we analyzed the optical observations of a subluminous Type Ia supernova (SN Ia) 2017fzw, which exhibited high photospheric velocity (HV) at B-band maximum light. The absolute B-band peak magnitude was determined to be MmaxB=−18.65±0.13 mag, similar to 91bg-like SNe Ia. An estimation of the rate of decline for the B-band light curve was determined to be Δm15(B)=1.60±0.06 mag. The spectra of SN 2017fzw were similar to those of 91bg-like SNe Ia, with prominent Ti ii and Si ii λ5972 features at early phases, gradually transitioning to spectra resembling normal (mainly HV subclass) SNe Ia at later phases, with a stronger Ca ii NIR feature. Notably, throughout all phases of observation, SN 2017fzw displayed spectral evolution characteristics that were comparable to those of HV SNe Ia, and at peak brightness, the Si ii λ6355 velocity was determined to be 13,800 ± 415 km s−1 and a more pronounced Ca ii NIR feature was also detected. Based on these findings, we classify SN 2017fzw as a transitional object with properties of both normal and 91bg-like SNe Ia, providing support for the hypothesis of a continuous distribution of supernovae between these two groups.more » « less
-
Abstract We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN ( M V ,peak = −17.81 ± 0.21 mag), whereas SN 2020kyg ( M V ,peak = −14.52 ± 0.21 mag) is a faint one. We derive 56 Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R / r -band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe.more » « less
-
ABSTRACT The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional between the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.more » « less