skip to main content


Title: Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt
Abstract

Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. usingTARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.

 
more » « less
Award ID(s):
1911225
NSF-PAR ID:
10439623
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 67
Size(s):
["Article No. 67"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frameB-band maximum light. The spectrum ranges from 4 to 14μm and shows many unique qualities, including a flat-topped [Ariii] 8.991μm profile, a strongly tilted [Coiii] 11.888μm feature, and multiple stable Ni lines. These features provide critical information about the physics of the explosion. The observations are compared to synthetic spectra from detailed non–local thermodynamic equilibrium multidimensional models. The results of the best-fitting model are used to identify the components of the spectral blends and provide a quantitative comparison to the explosion physics. Emission line profiles and the presence of electron capture elements are used to constrain the mass of the exploding white dwarf (WD) and the chemical asymmetries in the ejecta. We show that the observations of SN 2021aefx are consistent with an off-center delayed detonation explosion of a near–Chandrasekhar mass (MCh) WD at a viewing angle of −30° relative to the point of the deflagration to detonation transition. From the strengths of the stable Ni lines, we determine that there is little to no mixing in the central regions of the ejecta. Based on both the presence of stable Ni and the Ar velocity distributions, we obtain a strict lower limit of 1.2Mfor the initial WD, implying that most sub-MChexplosions models are not viable models for SN 2021aefx. The analysis here shows the crucial importance of MIR spectra in distinguishing between explosion scenarios for SNe Ia.

     
    more » « less
  2. Abstract

    SN 2021aefxis a normal Type Ia supernova (SN) showing excess emission and redward color evolution over the first ∼ 2 days. We present analyses of this SN using our high-cadence KMTNet multiband photometry, spectroscopy, and publicly available data, including first measurements of its explosion epoch (MJD 59529.32 ± 0.16) and onset of power-law rise (tPL= MJD 59529.85 ± 0.55; often calledfirst light) associated with the main ejecta56Ni distribution. The first KMTNet detection of SN 2021aefx precedestPLby ∼ 0.5 hr, indicating presence of additional power sources. Our peak-spectrum confirms its intermediate Type Ia subclassification between core-normal and broad-Line, and we estimate an ejecta mass of ∼ 1.34M. The spectral evolution identifies material reaching >40,000 km s−1(fastest ever observed in Type Ia SNe) and at least two split-velocity ejecta components expanding homologously: (1) a normal-velocity (∼ 12,400 km s−1) component consistent with typical photospheric evolution of near-Chandrasekhar-mass ejecta; and (2) a high-velocity (∼ 23,500 km s−1) secondary component visible during the first ∼ 3.6 days post-explosion, which locates the component within the outer <16% of the ejecta mass. Asymmetric subsonic explosion processes producing a nonspherical secondary photosphere provide an explanation for the simultaneous appearance of the two components, and may also explain the excess emission via a slight56Ni enrichment in the outer ∼ 0.5% of the ejecta mass. Our 300 days post-peak nebular-phase spectrum advances constraints against nondegenerate companions and further supports a near-Chandrasekhar-mass explosion origin. Off-center ignited delayed-detonations are likely responsible for the observed features of SN 2021aefx in some normal Type Ia SNe.

     
    more » « less
  3. Abstract

    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.

     
    more » « less
  4. ABSTRACT

    We present optical photometric and spectroscopic analysis of a Type Iax supernova (SN) 2020rea situated at the brighter luminosity end of Type Iax supernovae (SNe). The light curve decline rate of SN 2020rea is Δm15(g)  = 1.31 ± 0.08 mag which is similar to SNe 2012Z and 2005hk. Modelling the pseudo-bolometric light curve with a radiation diffusion model yields a mass of 56Ni of 0.13 ± 0.01 M⊙ and an ejecta mass of 0.77$^{+0.11}_{-0.21}$ M⊙. Spectral features of SN 2020rea during the photospheric phase show good resemblance with SN 2012Z. TARDIS modelling of the early spectra of SN 2020rea reveals a dominance of Iron Group Elements (IGEs). The photospheric velocity of the Si ii line around maximum for SN 2020rea is ∼ 6500 km s−1 which is less than the measured velocity of the Fe ii line and indicates significant mixing. The observed physical properties of SN 2020rea match with the predictions of pure deflagration model of a Chandrasekhar mass C–O white dwarf. The metallicity of the host galaxy around the SN region is 12 + log(O/H)  = 8.56 ± 0.18 dex which is similar to that of SN 2012Z.

     
    more » « less
  5. Abstract

    We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non–local thermodynamic equilibrium radiation transport codeCMFGEN, finding a good match to the explosion of a low-mass red supergiant with energyEkin= 6 × 1050erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude ofV= − 15.4 mag and plateau length of ∼115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra.

     
    more » « less