Fronts are ubiquitous discrete features of the global ocean often associated with enhanced vertical velocities, in turn boosting primary production. Fronts thus form dynamical and ephemeral ecosystems where numerous species meet across all trophic levels. Fronts are also targeted by fisheries. Capturing ocean fronts and studying their long-term variability in relation with climate change is thus key for marine resource management and spatial planning. The Mediterranean Sea and the Southwest Indian Ocean are natural laboratories to study front-marine life interactions due to their energetic flow at sub-to-mesoscales, high biodiversity (including endemic and endangered species) and numerous conservation initiatives. Based on remotely-sensed Sea Surface Temperature and Height, we compute thermal fronts (2003–2020) and attracting Lagrangian coherent structures (1994–2020), in both regions over several decades. We advocate for the combined use of both thermal fronts and attracting Lagrangian coherent structures to study front-marine life interactions. The resulting front dataset differs from other alternatives by its high spatio-temporal resolution, long time coverage, and relevant thresholds defined for ecological provinces.
Diatoms are among the most efficient autotrophic organisms for oceanic primary production and carbon sequestration. Yet, the spatial distributions of these planktonic organisms remain puzzling and the underlying physical processes poorly known, especially in oligotrophic open waters. Here we investigate what dynamical conditions are conducive to episodic diatom blooms in oceanic deserts based on Lagrangian diagnosis and satellite‐derived phytoplankton functional types and currents. The coherence of the flow is diagnosed in space and time simultaneously through the Lagrangian coherence rate (LCR) to identify which dynamical structures favor diatom growth. Observations evidence that flow structures with high LCR (40 days or longer) in areas with elevated eddy kinetic energy and vorticity sustain high diatom concentrations in the sunlit layers. Our findings show that the integration of Eulerian kinematic variables into a Lagrangian frame reveals new dynamical aspects of geophysical turbulence and unveil their biological impacts.
more » « less- PAR ID:
- 10439640
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Freshwater fishes are notably diverse, given that freshwater habitat represents a tiny fraction of the earth's surface, but the mechanisms generating this diversity remain poorly understood. Rivers provide excellent models to understand how freshwater diversity is generated and maintained across heterogeneous habitats. In particular, the lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, morphological and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. Here, we examined four lamprologine cichlids endemic to the LCR that are distributed along the river without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at interspecific and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that powerful rapids sometimes act as a barrier to gene flow but also suggest that, at certain temporal and spatial scales, they may provide multidirectional dispersal opportunities for riverine rheophilic cichlid fishes. These results highlight the complexity of diversification processes in rivers and the importance of assessing such processes across different riverscapes.more » « less
-
Abstract We investigate the role of small‐scale, high‐frequency motions on lateral transport in the ocean, by using velocity fields and particle trajectories from an ocean general circulation model (MITgcm‐llc4320) that permits submesoscale flows, inertia‐gravity waves, and tides. Temporal averaging/filtering removes most of the submesoscale turbulence, inertia‐gravity waves, and tides, resulting in a largely geostrophic flow, with a rapid drop‐off in energy at scales smaller than the mesoscales. We advect two types of Lagrangian particles: (a) 2‐D particles (surface restricted) and (b) 3‐D particles (advected in full three dimensions) with the filtered and unfiltered velocities and calculate Lagrangian diagnostics. At large length/time scales, Lagrangian diffusivity is comparable for filtered and unfiltered velocities, while at short scales, unfiltered velocities disperse particles much faster. We also calculate diagnostics of Lagrangian coherent structures:rotationally coherent Lagrangian vortices detected from closed contours of the Lagrangian‐averaged vorticity deviation and material transport barriers formed by ridges of maximum finite‐time Lyapunov exponent. For temporally filtered velocities, we observe strong material coherence, which breaks down when the level of temporal filtering is reduced/removed, due to vigorous small‐scale mixing. In addition, for the lowest temporal resolution, the 3‐D particles experience very little vertical motion, suggesting that degrading temporal resolution greatly reduces vertical advection by high‐frequency motions. Our study suggests that Lagrangian diagnostics based on satellite‐derived surface geostrophic velocity fields, even with higher spatial resolutions as in the upcoming Surface Water and Ocean Topography mission, may overestimate the presence of mesoscale coherent structures and underestimate dispersion.
-
Abstract Background Lignocellulosic conversion residue (LCR) is the material remaining after deconstructed lignocellulosic biomass is subjected to microbial fermentation and treated to remove the biofuel. Technoeconomic analyses of biofuel refineries have shown that further microbial processing of this LCR into other bioproducts may help offset the costs of biofuel generation. Identifying organisms able to metabolize LCR is an important first step for harnessing the full chemical and economic potential of this material. In this study, we investigated the aerobic LCR utilization capabilities of 71 Streptomyces and 163 yeast species that could be engineered to produce valuable bioproducts. The LCR utilization by these individual microbes was compared to that of an aerobic mixed microbial consortium derived from a wastewater treatment plant as representative of a consortium with the highest potential for degrading the LCR components and a source of genetic material for future engineering efforts. Results We analyzed several batches of a model LCR by chemical oxygen demand (COD) and chromatography-based assays and determined that the major components of LCR were oligomeric and monomeric sugars and other organic compounds. Many of the Streptomyces and yeast species tested were able to grow in LCR, with some individual microbes capable of utilizing over 40% of the soluble COD. For comparison, the maximum total soluble COD utilized by the mixed microbial consortium was about 70%. This represents an upper limit on how much of the LCR could be valorized by engineered Streptomyces or yeasts into bioproducts. To investigate the utilization of specific components in LCR and have a defined media for future experiments, we developed a synthetic conversion residue (SynCR) to mimic our model LCR and used it to show lignocellulose-derived inhibitors (LDIs) had little effect on the ability of the Streptomyces species to metabolize SynCR. Conclusions We found that LCR is rich in carbon sources for microbial utilization and has vitamins, minerals, amino acids and other trace metabolites necessary to support growth. Testing diverse collections of Streptomyces and yeast species confirmed that these microorganisms were capable of growth on LCR and revealed a phylogenetic correlation between those able to best utilize LCR. Identification and quantification of the components of LCR enabled us to develop a synthetic LCR (SynCR) that will be a useful tool for examining how individual components of LCR contribute to microbial growth and as a substrate for future engineering efforts to use these microorganisms to generate valuable bioproducts.more » « less
-
Understanding the effect of hydrodynamics on aggregate size and structure is key to predicting mass transport in the aquatic environment. Aggregation theory of particles is well established but our knowledge of deformation processes, biological bonding forces, and their effects on fragmentation of aquatic aggregates is still limited. To better comprehend fragmentation processes and adhesion forces we implemented breakup experiments with diatom and microplastic aggregates made in the laboratory. We captured a substantial number of events showing deformation and subsequent fragmentation of these aggregates in an oscillatory shear flow. Polystyrene and polyethylene aggregates showed distinct fragmentation strengths and provided comparative upper and lower limits to the biological bonding strength of the diatom aggregates. Additionally, we employed a force balance model to evaluate attractive interactions within clusters of particles using the Lagrangian stress history and morphology. We found that the fractal structures of aggregates led to a power law of breakup strength with size and that time-integrated stress governed the overall fragmentation process. We also found that the weakening of the aggregates through deformation with shear exposure enabled their disaggregation at very low shear rates typical of the ocean environment.