The central hypothesis of the genotype–phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism's genome and phenome. 
                        more » 
                        « less   
                    
                            
                            Mechanobiology as a tool for addressing the genotype-tophenotype problem in microbiology
                        
                    
    
            The central hypothesis of the genotype–phenotype relationship is that the phenotype of a developing organism (i.e., its set of observable attributes) depends on its genome and the environment. However, as we learn more about the genetics and biochemistry of living systems, our understanding does not fully extend to the complex multiscale nature of how cells move, interact, and organize; this gap in understanding is referred to as the genotype-to-phenotype problem. The physics of soft matter sets the background on which living organisms evolved, and the cell environment is a strong determinant of cell phenotype. This inevitably leads to challenges as the full function of many genes, and the diversity of cellular behaviors cannot be assessed without wide screens of environmental conditions. Cellular mechanobiology is an emerging field that provides methodologies to understand how cells integrate chemical and physical environmental stress and signals, and how they are transduced to control cell function. Biofilm forming bacteria represent an attractive model because they are fast growing, genetically malleable and can display sophisticated self-organizing developmental behaviors similar to those found in higher organisms. Here, we propose mechanobiology as a new area of study in prokaryotic systems and describe its potential for unveiling new links between an organism’s genome and phenome. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10439702
- Date Published:
- Journal Name:
- Biophysics reviews
- Volume:
- 4
- ISSN:
- 2688-4089
- Page Range / eLocation ID:
- 021304
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Natural selection acts on cellular organisms by ensuring the genes responsible for an advantageous phenotype consistently reap the phenotypic advantage. This is possible because reproductive cells of these organisms are almost always haploid, separating the beneficial gene from its rival allele at every generation. How natural selection acts on plus-strand RNA viruses is unclear because these viruses frequently load host cells with numerous genome copies and replicate thousands of progeny genomes in each cell. Recent studies suggest that these viruses encode the Bottleneck, Isolate, Amplify, Select (BIAS) mechanism that blocks all but a few viral genome copies from replication, thus creating the environment in which the bottleneck-escaping viral genome copies are isolated from each other, allowing natural selection to reward beneficial mutations and purge lethal errors. This BIAS mechanism also blocks the genomes of highly homologous superinfecting viruses, thus explaining cellular-level superinfection exclusion.more » « less
- 
            Abstract Living biological systems, ranging from single cells to whole organisms, can sense, process information, and actuate in response to changing environmental conditions. Inspired by living biological systems, engineered living cells and nonliving matrices are brought together, which gives rise to the technology of engineered living materials. By designing the functionalities of living cells and the structures of nonliving matrices, engineered living materials can be created to detect variability in the surrounding environment and to adjust their functions accordingly, thereby enabling applications in health monitoring, disease treatment, and environmental remediation. Hydrogels, a class of soft, wet, and biocompatible materials, have been widely used as matrices for engineered living cells, leading to the nascent field of engineered living hydrogels. Here, the interactions between hydrogel matrices and engineered living cells are described, focusing on how hydrogels influence cell behaviors and how cells affect hydrogel properties. The interactions between engineered living hydrogels and their environments, and how these interactions enable versatile applications, are also discussed. Finally, current challenges facing the field of engineered living hydrogels for their applications in clinical and environmental settings are highlighted.more » « less
- 
            Holler, Silvia; Löffler, Richard; Bartlett, Stuart (Ed.)The major evolutionary transition to multicellularity shifted the unit of selection from individual cells to multicellular organisms. Constituent cells must regulate their growth and cooperate to benefit the whole organism, even when such behaviors would have been maladaptive were they free living. Mutations that disrupt cellular cooperation can lead to various ailments, including physical deformities and cancer. Organisms therefore employ mechanisms to enforce cooperation, such as error correction, policing, and genetic robustness. We built a simulation to study this last mechanism under a range of evolutionary conditions. Specifically, we asked: How does genetic robustness against cellular cheating evolve in multicellular organisms? We focused on early multicellular organisms (with only one cell type) where cells must control their growth to avoid overwriting each other. In our model, unrestrained cells will outcompete restrained cells within an organism, but restrained cells alone will result in faster reproduction for the organism. Ultimately, we demonstrate a clear selective pressure for genetic robustness in multicellular organisms and show that this pressure increases with the total number of cells in the organism.more » « less
- 
            Genomically minimal cells, such as JCVI-syn3.0 and JCVI-syn3A, offer an empowering framework to study relationships between genotype and phenotype. With a polygenic basis, the fundamental physiological process of cell division depends on multiple genes of known and unknown function in JCVI-syn3A. A physical description of cellular mechanics can further understanding of the contributions of genes to cell division in this genomically minimal context. We review current knowledge on genes in JCVI-syn3A contributing to two physical parameters relevant to cell division, namely, the surface-area-to-volume ratio and membrane curvature. This physical view of JCVI-syn3A may inform the attribution of gene functions and conserved processes in bacterial physiology, as well as whole-cell models and the engineering of synthetic cells.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    