skip to main content


This content will become publicly available on August 1, 2024

Title: Expedition 389 Scientific Prospectus: Hawaiian Drowned Reefs
Our understanding of the links and mechanisms that control eustatic sea level and global climate changes has been significantly hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. We propose to directly address this problem by drilling a unique succession of drowned coral reefs around Hawaii (USA) now at 134–1155 meters below sea level. Abundant observational and numerical modeling data indicate that the internal stratigraphy and tops of these reefs are highly sensitive to sea level and climate changes, thereby providing a firm template with which to conduct these operations. As a direct result of Hawaii’s rapid (2.5–2.6 m/ky) but nearly constant subsidence, a thick (100–200 m) expanded sequence of shallow coral reef dominated facies is preserved within the reefs. These reefs span important periods in the Earth’s climate history, and coral reef records are either not available or highly condensed on stable (Great Barrier Reef, Tahiti) and uplifted margins (Papua New Guinea, Barbados) because of a lack of accommodation space and/or unfavorable shelf morphology. Specifically, these data show that the reefs grew (for ~90–100 ky, albeit episodically) into, during, and out of the majority of the last five to six glacial cycles. Therefore, scientific drilling through these reefs will generate a new record of sea level and associated climate variability during several controversial and poorly understood periods over the last 500 ky. The project has four major objectives. The first objective will be to constrain the timing, rate, and amplitude of sea level variability over the last 500 ky allowing a definitive test of Milankovitch climate theory and an assessment of controversial abrupt sea level events (meltwater pulses) that occur on suborbital frequencies associated with events occurring in the extratropics (i.e., Dansgaard–Oeschger ice core temperature events and related Heinrich ice-rafted debris events in North Atlantic sediment cores). The second objective will be to investigate processes that determine changes in mean climate and high-frequency (seasonal–interannual) climate variability using high-resolution coral proxy data from times with different climate forcing boundary conditions (e.g., ice sheet size, pCO2, and solar forcing) over the last 500 ky. The third objective will be to determine the response of coral reef systems to abrupt sea level and climate changes, to test sedimentary models of reef evolution and ecological theories of coral reef resilience, and to establish the role of microbial communities in reef building. The fourth objective will be to refine the variation through space and time of the subsidence of Hawaii and contribute to understanding the volcanic evolution of the island.  more » « less
Award ID(s):
1326927
NSF-PAR ID:
10439725
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific prospectus
Volume:
389
ISSN:
2332-1385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics, will investigate the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in atmospheric CO2 in the past and how ice sheet evolution influenced global sea level. We will drill six sites in the Scotia Sea, east of the Antarctic Peninsula, providing the first deep drilling in this region of the Southern Ocean. We expect to recover >600 m of late Neogene sediment that will be used to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. Expedition 382 expects to deliver the first spatially and temporally integrated record of iceberg flux from “Iceberg Alley,” the main pathway by which icebergs are calved from the margin of the AIS and travel equatorward into warmer waters of the Antarctic Circumpolar Current (ACC). In particular, we will characterize the magnitude of iceberg flux during key times of AIS evolution: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm interval, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition, and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss in this region, address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea, Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water-mass production, CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate climate-dust couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the mid-Pleistocene transition. The principal scientific objective of the South Falkland Slope sites to the north is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins. The South Falkland Slope Drift, a contourite drift on the Falkland margin deposited between 400 and 2000 m water depth, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front over at least the last 2 My. We anticipate that these sites will yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean and track the migration of the Subantarctic Front. We expect the cored sediments to capture the following significant climate episodes: • The most recent warm interglacials of the late Pleistocene; • The mid-Pleistocene transition, when δ18O records shifted from dominantly 41 to 100 ky periodicity; and possibly • Mid-Pliocene warm intervals, often invoked as the best analog for possible future climate change. 
    more » « less
  2. Abstract

    In tropical and sub‐tropical mixed siliciclastic–carbonate depositional systems, fluvial input andin situneritic carbonate interact over space and time. Despite being the subject of many studies, controls on partitioning of mixed sediments remains controversial. Mixed sedimentary records, from Ashmore Trough shelf edge and slopes (southern Gulf of Papua), are coupled with global sea‐level curves and anchored to Marine Isotope Stage stratigraphy to constrain models of sediment accumulation at two different timescales for the past 130 kyr: (i) 100 kyr scale for last glacial cycle; and (ii) millennial scale for last deglaciation. During the last glacial cycle, carbonate production and accumulation were primarily controlled by sea‐level fluctuations. Export of neritic carbonate to the slopes was initiated during re‐flooding of previously exposed reefs and continued during Marine Isotope Stage 5e and 1 interglacial sea‐level highs. Siliciclastic fluxes to the slope were controlled by interplay of sea level, shelf physiography and oceanic currents. Heterogeneous accumulation of siliciclastic mud on the slope, took place during Marine Isotope Stage 5d to Marine Isotope Stage 3 sea‐level fall. Siliciclastics reached adjacent depocentres during Marine Isotope Stage 2. Coralgal reef and oolitic–skeletal sand resumed at the shelf edge during the subsequent stepwise sea‐level rise of the last deglaciation. Contemporaneous, abrupt siliciclastic input from increased precipitation and fluvial discharge illustrates that climate controlled deglacial sedimentation. Siliciclastic input persisted untilca8.5 ka. Carbonate accumulation waned at the shelf edge afterca14 ka, whereas it increased on the slopes sinceca11.5 ka, when previously exposed reef and bank tops were re‐flooded. When comparing the last sea‐level cycle sedimentation patterns of the southern Gulf of Papua with other coeval mixed systems, sea level and shelf physiography emerge as primary controls on deposition at the 100 kyr scale. At the millennial scale, siliciclastic input was also controlled by climate change during the unstable atmospheric and oceanic conditions of the last deglaciation.

     
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediment to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediments to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how intermediate water formation in the southwest Atlantic responds to changes in connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  5. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less