Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389 by drilling a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variation through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with numerous intervals characterized by very well preserved mixtures of coralgal and microbialite frameworks with recoveries >90%. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were CT and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and basalt cores suggest that many of the expedition objectives will be met.
more »
« less
Expedition 389 Scientific Prospectus: Hawaiian Drowned Reefs
Our understanding of the links and mechanisms that control eustatic sea level and global climate changes has been significantly hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. We propose to directly address this problem by drilling a unique succession of drowned coral reefs around Hawaii (USA) now at 134–1155 meters below sea level. Abundant observational and numerical modeling data indicate that the internal stratigraphy and tops of these reefs are highly sensitive to sea level and climate changes, thereby providing a firm template with which to conduct these operations. As a direct result of Hawaii’s rapid (2.5–2.6 m/ky) but nearly constant subsidence, a thick (100–200 m) expanded sequence of shallow coral reef dominated facies is preserved within the reefs. These reefs span important periods in the Earth’s climate history, and coral reef records are either not available or highly condensed on stable (Great Barrier Reef, Tahiti) and uplifted margins (Papua New Guinea, Barbados) because of a lack of accommodation space and/or unfavorable shelf morphology. Specifically, these data show that the reefs grew (for ~90–100 ky, albeit episodically) into, during, and out of the majority of the last five to six glacial cycles. Therefore, scientific drilling through these reefs will generate a new record of sea level and associated climate variability during several controversial and poorly understood periods over the last 500 ky. The project has four major objectives. The first objective will be to constrain the timing, rate, and amplitude of sea level variability over the last 500 ky allowing a definitive test of Milankovitch climate theory and an assessment of controversial abrupt sea level events (meltwater pulses) that occur on suborbital frequencies associated with events occurring in the extratropics (i.e., Dansgaard–Oeschger ice core temperature events and related Heinrich ice-rafted debris events in North Atlantic sediment cores). The second objective will be to investigate processes that determine changes in mean climate and high-frequency (seasonal–interannual) climate variability using high-resolution coral proxy data from times with different climate forcing boundary conditions (e.g., ice sheet size, pCO2, and solar forcing) over the last 500 ky. The third objective will be to determine the response of coral reef systems to abrupt sea level and climate changes, to test sedimentary models of reef evolution and ecological theories of coral reef resilience, and to establish the role of microbial communities in reef building. The fourth objective will be to refine the variation through space and time of the subsidence of Hawaii and contribute to understanding the volcanic evolution of the island.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10439725
- Date Published:
- Journal Name:
- Scientific prospectus
- Volume:
- 389
- ISSN:
- 2332-1385
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389, which drilled a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variations through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites in water depths ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with recoveries >90% in numerous intervals characterized by very well preserved coralgal and microbialite frameworks. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site, the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were computed tomography (CT) scanned and then opened and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and volcanic cores suggest that many of the expedition objectives will be met.more » « less
-
Our understanding of the mechanisms controlling eustatic sea level and global climate changes has been hampered by a lack of appropriate fossil coral records over the last 500 ky, particularly into and out of the glacial periods. This problem was addressed by International Ocean Discovery Program Expedition 389, which drilled a unique succession of Hawaiian drowned coral reefs now at 110–1300 meters below sea level (mbsl). The four objectives are to investigate (1) the timing, rate, and amplitude of sea level variability to examine cryosphere and geophysical processes, including the assessment of abrupt sea level change events; (2) the processes that determine changes in mean and high-frequency (seasonal–interannual) climate variability from times with different boundary conditions (e.g., ice sheet size, pCO2, and solar forcing); (3) the response of coral reef systems to abrupt sea level and climate changes; and (4) the variations through space and time of the subsidence and the volcanic evolution of the island. To achieve these objectives, 35 holes at 16 sites in water depths ranging 131.9–1241.8 mbsl were drilled during the expedition. A total of 425 m of core was recovered, comprising reef (83%) and volcanic (17%) material. Average core recoveries were 66%, with recoveries >90% in numerous intervals characterized by very well preserved coralgal and microbialite frameworks. Some science-critical shallow sites were not drilled due to a failure to secure permits to operate in Hawaiian state waters. Furthermore, apart from one site, the target penetration depths were not achieved. Preliminary radiometric dates indicate that the recovered reef deposits are from 488 to 13 ka in age. The Onshore Science Party took place in February 2024. Cores were computed tomography (CT) scanned and then opened and hyperspectral scanned and described. Standard measurements were made, and samples were taken for postcruise research. Preliminary assessment of the age and quality of the reef and volcanic cores suggest that many of the expedition objectives will be met.more » « less
-
Abstract Climate plays a central role in coral-reef development, especially in marginal environments. The high-latitude reefs of southeast Florida are currently non-accreting, relict systems with low coral cover. This region also did not support the extensive Late Pleistocene reef development observed in many other locations around the world; however, there is evidence of significant reef building in southeast Florida during the Holocene. Using 146 radiometric ages from reefs extending ~ 120 km along Florida’s southeast coast, we test the hypothesis that the latitudinal extent of Holocene reef development in this region was modulated by climatic variability. We demonstrate that although sea-level changes impacted rates of reef accretion and allowed reefs to backstep inshore as new habitats were flooded, sea level was not the ultimate cause of reef demise. Instead, we conclude that climate was the primary driver of the expansion and contraction of Florida’s reefs during the Holocene. Reefs grew to 26.7° N in southeast Florida during the relatively warm, stable climate at the beginning of the Holocene Thermal Maximum (HTM) ~ 10,000 years ago, but subsequent cooling and increased frequency of winter cold fronts were associated with the equatorward contraction of reef building. By ~ 7800 years ago, actively accreting reefs only extended to 26.1° N. Reefs further contracted to 25.8° N after 5800 years ago, and by 3000 years ago reef development had terminated throughout southern Florida (24.5–26.7° N). Modern warming is unlikely to simply reverse this trend, however, because the climate of the Anthropocene will be fundamentally different from the HTM. By increasing the frequency and intensity of both warm and cold extreme-weather events, contemporary climate change will instead amplify conditions inimical to reef development in marginal reef environments such as southern Florida, making them more likely to continue to deteriorate than to resume accretion in the future.more » « less
-
null (Ed.)International Ocean Discovery Program Expedition 382, Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics, will investigate the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in atmospheric CO2 in the past and how ice sheet evolution influenced global sea level. We will drill six sites in the Scotia Sea, east of the Antarctic Peninsula, providing the first deep drilling in this region of the Southern Ocean. We expect to recover >600 m of late Neogene sediment that will be used to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. Expedition 382 expects to deliver the first spatially and temporally integrated record of iceberg flux from “Iceberg Alley,” the main pathway by which icebergs are calved from the margin of the AIS and travel equatorward into warmer waters of the Antarctic Circumpolar Current (ACC). In particular, we will characterize the magnitude of iceberg flux during key times of AIS evolution: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm interval, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition, and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss in this region, address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea, Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water-mass production, CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate climate-dust couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the mid-Pleistocene transition. The principal scientific objective of the South Falkland Slope sites to the north is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins. The South Falkland Slope Drift, a contourite drift on the Falkland margin deposited between 400 and 2000 m water depth, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front over at least the last 2 My. We anticipate that these sites will yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean and track the migration of the Subantarctic Front. We expect the cored sediments to capture the following significant climate episodes: • The most recent warm interglacials of the late Pleistocene; • The mid-Pleistocene transition, when δ18O records shifted from dominantly 41 to 100 ky periodicity; and possibly • Mid-Pliocene warm intervals, often invoked as the best analog for possible future climate change.more » « less
An official website of the United States government

