skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 1, 2025

Title: Accelerating Thermal Simulations in Additive Manufacturing by Training Physics-Informed Neural Networks With Randomly Synthesized Data
Abstract The temperature history of an additively manufactured part plays a critical role in determining process–structure–property relationships in fusion-based additive manufacturing (AM) processes. Therefore, fast thermal simulation methods are needed for a variety of AM tasks, from temperature history prediction for part design and process planning to in situ temperature monitoring and control during manufacturing. However, conventional numerical simulation methods fall short in satisfying the strict requirements of time efficiency in these applications due to the large space and time scales of the required multiscale simulation. While data-driven surrogate models are of interest for their rapid computation capabilities, the performance of these models relies on the size and quality of the training data, which is often prohibitively expensive to create. Physics-informed neural networks (PINNs) mitigate the need for large datasets by imposing physical principles during the training process. This work investigates the use of a PINN to predict the time-varying temperature distribution in a part during manufacturing with laser powder bed fusion (L-PBF). Notably, the use of the PINN in this study enables the model to be trained solely on randomly synthesized data. These training data are both inexpensive to obtain, and the presence of stochasticity in the dataset improves the generalizability of the trained model. Results show that the PINN model achieves higher accuracy than a comparable artificial neural network trained on labeled data. Further, the PINN model trained in this work maintains high accuracy in predicting temperature for laser path scanning strategies unseen in the training data.  more » « less
Award ID(s):
2309250
NSF-PAR ID:
10439731
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Computing and Information Science in Engineering
Volume:
24
Issue:
1
ISSN:
1530-9827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose The purpose of this paper is to develop, apply and validate a mesh-free graph theory–based approach for rapid thermal modeling of the directed energy deposition (DED) additive manufacturing (AM) process. Design/methodology/approach In this study, the authors develop a novel mesh-free graph theory–based approach to predict the thermal history of the DED process. Subsequently, the authors validated the graph theory predicted temperature trends using experimental temperature data for DED of titanium alloy parts (Ti-6Al-4V). Temperature trends were tracked by embedding thermocouples in the substrate. The DED process was simulated using the graph theory approach, and the thermal history predictions were validated based on the data from the thermocouples. Findings The temperature trends predicted by the graph theory approach have mean absolute percentage error of approximately 11% and root mean square error of 23°C when compared to the experimental data. Moreover, the graph theory simulation was obtained within 4 min using desktop computing resources, which is less than the build time of 25 min. By comparison, a finite element–based model required 136 min to converge to similar level of error. Research limitations/implications This study uses data from fixed thermocouples when printing thin-wall DED parts. In the future, the authors will incorporate infrared thermal camera data from large parts. Practical implications The DED process is particularly valuable for near-net shape manufacturing, repair and remanufacturing applications. However, DED parts are often afflicted with flaws, such as cracking and distortion. In DED, flaw formation is largely governed by the intensity and spatial distribution of heat in the part during the process, often referred to as the thermal history. Accordingly, fast and accurate thermal models to predict the thermal history are necessary to understand and preclude flaw formation. Originality/value This paper presents a new mesh-free computational thermal modeling approach based on graph theory (network science) and applies it to DED. The approach eschews the tedious and computationally demanding meshing aspect of finite element modeling and allows rapid simulation of the thermal history in additive manufacturing. Although the graph theory has been applied to thermal modeling of laser powder bed fusion (LPBF), there are distinct phenomenological differences between DED and LPBF that necessitate substantial modifications to the graph theory approach. 
    more » « less
  2. Current metal additive manufacturing (AM) systems suffer from limitations on the minimum feature sizes they can produce during part formation. The microscale selective laser sintering (μ-SLS) system addresses this drawback by enabling the production of parts with minimum feature resolutions of the order of a single micrometer. However, the production of microscale parts is challenging due to unwanted heat conduction within the nanoparticle powder bed. As a result, finite element (FE) thermal models have been developed to predict the evolution of temperature within the particle bed during laser sintering. These thermal models are not only computationally expensive but also must be integrated into an iterative model-based control framework to optimize the digital mask used to control the distribution of laser power. These limitations necessitate the development of a machine learning (ML) surrogate model to quickly and accurately predict the temperature evolution within the μ-SLS particle bed using minimal training data. The regression model presented in this work uses an “Element-by-Element” approach, where models are trained on individual finite elements to learn the relationship between thermal conditions experienced by each element at a given time-step and the element's temperature at the next time-step. An existing bed-scale FE thermal model of the μ-SLS system is used to generate element-by-element tabular training data for the ML model. A data-efficient artificial neural network (NN) is then trained to predict the temperature evolution of a 2D powder-bed over a 2 s sintering window with high accuracy.

     
    more » « less
  3. The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements. 
    more » « less
  4. null (Ed.)
    Despite its potential to overcome the design and processing barriers of traditional subtractive and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. The temperature distribution, also called the thermal history, is a function of several factors encompassing material properties, part geometry and orientation, processing parameters, placement of supports, among others. These broad range of factors are difficult and expensive to optimize through empirical testing alone. Consequently, fast and accurate models to predict the thermal history are valuable for mitigating flaw formation in LPBF-processed parts. In our prior works, we developed a graph theory-based approach for predicting the temperature distribution in LPBF parts. This mesh-free approach was compared with both non-proprietary and commercial finite element packages, and the thermal history predictions were experimentally validated with in- situ infrared thermal imaging data. It was found that the graph theory-derived thermal history predictions converged within 30–50% of the time of non-proprietary finite element analysis for a similar level of prediction error. However, these prior efforts were based on small prismatic and cylinder-shaped LPBF parts. In this paper, our objective was to scale the graph theory approach to predict the thermal history of large volume, complex geometry LPBF parts. To realize this objective, we developed and applied three computational strategies to predict the thermal history of a stainless steel (SAE 316L) impeller having outside diameter 155 mm and vertical height 35 mm (700 layers). The impeller was processed on a Renishaw AM250 LPBF system and required 16 h to complete. During the process, in-situ layer-by-layer steady state surface temperature measurements for the impeller were obtained using a calibrated longwave infrared thermal camera. As an example of the outcome, on implementing one of the three strategies reported in this work, which did not reduce or simplify the part geometry, the thermal history of the impeller was predicted with approximate mean absolute error of 6% (standard deviation 0.8%) and root mean square error 23 K (standard deviation 3.7 K). Moreover, the thermal history was simulated within 40 min using desktop computing, which is considerably less than the 16 h required to build the impeller part. Furthermore, the graph theory thermal history predictions were compared with a proprietary LPBF thermal modeling software and non-proprietary finite element simulation. For a similar level of root mean square error (28 K), the graph theory approach converged in 17 min, vs. 4.5 h for non-proprietary finite element analysis. 
    more » « less
  5. null (Ed.)
    Abstract Laser-based additive manufacturing (LBAM) provides unrivalled design freedom with the ability to manufacture complicated parts for a wide range of engineering applications. Melt pool is one of the most important signatures in LBAM and is indicative of process anomalies and part defects. High-speed thermal images of the melt pool captured during LBAM make it possible for in situ melt pool monitoring and porosity prediction. This paper aims to broaden current knowledge of the underlying relationship between process and porosity in LBAM and provide new possibilities for efficient and accurate porosity prediction. We present a deep learning-based data fusion method to predict porosity in LBAM parts by leveraging the measured melt pool thermal history and two newly created deep learning neural networks. A PyroNet, based on Convolutional Neural Networks, is developed to correlate in-process pyrometry images with layer-wise porosity; an IRNet, based on Long-term Recurrent Convolutional Networks, is developed to correlate sequential thermal images from an infrared camera with layer-wise porosity. Predictions from PyroNet and IRNet are fused at the decision-level to obtain a more accurate prediction of layer-wise porosity. The model fidelity is validated with LBAM Ti–6Al–4V thin-wall structure. This is the first work that manages to fuse pyrometer data and infrared camera data for metal additive manufacturing (AM). The case study results based on benchmark datasets show that our method can achieve high accuracy with relatively high efficiency, demonstrating the applicability of the method for in situ porosity detection in LBAM. 
    more » « less