Abstract During gene regulation, DNA accessibility is thought to limit the availability of transcription factor (TF) binding sites, while TFs can increase DNA accessibility to recruit additional factors that upregulate gene expression. Given this interplay, the causative regulatory events in the modulation of gene expression remain unknown for the vast majority of genes. We utilized deeply sequenced ATAC-Seq data and site-specific knock-in reporter genes to investigate the relationship between the binding-site resolution dynamics of DNA accessibility and the expression dynamics of the enhancers of Cebpa during macrophage-neutrophil differentiation. While the enhancers upregulate reporter expression during the earliest stages of differentiation, there is little corresponding increase in their total accessibility. Conversely, total accessibility peaks during the last stages of differentiation without any increase in enhancer activity. The accessibility of positions neighboring C/EBP-family TF binding sites, which indicates TF occupancy, does increase significantly during early differentiation, showing that the early upregulation of enhancer activity is driven by TF binding. These results imply that a generalized increase in DNA accessibility is not sufficient, and binding by enhancer-specific TFs is necessary, for the upregulation of gene expression. Additionally, high-coverage ATAC-Seq combined with time-series expression data can infer the sequence of regulatory events at binding-site resolution.
more »
« less
Data-driven modeling predicts gene regulatory network dynamics during the differentiation of multipotential hematopoietic progenitors
Cellular differentiation during hematopoiesis is guided by gene regulatory networks (GRNs) comprising transcription factors (TFs) and the effectors of cytokine signaling. Based largely on analyses conducted at steady state, these GRNs are thought to be organized as a hierarchy of bistable switches, with antagonism between Gata1 and PU.1 driving red- and white-blood cell differentiation. Here, we utilize transient gene expression patterns to infer the genetic architecture—the type and strength of regulatory interconnections—and dynamics of a twelve-gene GRN including key TFs and cytokine receptors. We trained gene circuits, dynamical models that learn genetic architecture, on high temporal-resolution gene-expression data from the differentiation of an inducible cell line into erythrocytes and neutrophils. The model is able to predict the consequences of gene knockout, knockdown, and overexpression experiments and the inferred interconnections are largely consistent with prior empirical evidence. The inferred genetic architecture is densely interconnected rather than hierarchical, featuring extensive cross-antagonism between genes from alternative lineages and positive feedback from cytokine receptors. The analysis of the dynamics of gene regulation in the model reveals that PU.1 is one of the last genes to be upregulated in neutrophil conditions and that the upregulation of PU.1 and other neutrophil genes is driven by Cebpa and Gfi1 instead. This model inference is confirmed in an independent single-cell RNA-Seq dataset from mouse bone marrow in which Cebpa and Gfi1 expression precedes the neutrophil-specific upregulation of PU.1 during differentiation. These results demonstrate that full PU.1 upregulation during neutrophil development involves regulatory influences extrinsic to the Gata1-PU.1 bistable switch. Furthermore, although there is extensive cross-antagonism between erythroid and neutrophil genes, it does not have a hierarchical structure. More generally, we show that the combination of high-resolution time series data and data-driven dynamical modeling can uncover the dynamics and causality of developmental events that might otherwise be obscured.
more »
« less
- PAR ID:
- 10439741
- Editor(s):
- Newman, Stuart A
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 18
- Issue:
- 1
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1009779
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro–B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro– to pre–B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1’s critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.more » « less
-
Abstract The regulation of gene expression is central to many biological processes. Gene regulatory networks (GRNs) link transcription factors (TFs) to their target genes and represent maps of potential transcriptional regulation. Here, we analyzed a large number of publically available maize (Zea mays) transcriptome data sets including >6000 RNA sequencing samples to generate 45 coexpression-based GRNs that represent potential regulatory relationships between TFs and other genes in different populations of samples (cross-tissue, cross-genotype, and tissue-and-genotype samples). While these networks are all enriched for biologically relevant interactions, different networks capture distinct TF-target associations and biological processes. By examining the power of our coexpression-based GRNs to accurately predict covarying TF-target relationships in natural variation data sets, we found that presence/absence changes rather than quantitative changes in TF gene expression are more likely associated with changes in target gene expression. Integrating information from our TF-target predictions and previous expression quantitative trait loci (eQTL) mapping results provided support for 68 TFs underlying 74 previously identified trans-eQTL hotspots spanning a variety of metabolic pathways. This study highlights the utility of developing multiple GRNs within a species to detect putative regulators of important plant pathways and provides potential targets for breeding or biotechnological applications.more » « less
-
Marshall-Colon, Amy (Ed.)Abstract Gene regulatory networks (GRNs) are defined by a cascade of transcriptional events by which signals, such as hormones or environmental cues, change development. To understand these networks, it is necessary to link specific transcription factors (TFs) to the downstream gene targets whose expression they regulate. Although multiple methods provide information on the targets of a single TF, moving from groups of co-expressed genes to the TF that controls them is more difficult. To facilitate this bottom-up approach, we have developed a web application named TF DEACoN. This application uses a publicly available Arabidopsis thaliana DNA Affinity Purification (DAP-Seq) data set to search for TFs that show enriched binding to groups of co-regulated genes. We used TF DEACoN to examine groups of transcripts regulated by treatment with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), using a transcriptional data set performed with high temporal resolution. We demonstrate the utility of this application when co-regulated genes are divided by timing of response or cell-type-specific information, which provides more information on TF/target relationships than when less defined and larger groups of co-regulated genes are used. This approach predicted TFs that may participate in ethylene-modulated root development including the TF NAM (NO APICAL MERISTEM). We used a genetic approach to show that a mutation in NAM reduces the negative regulation of lateral root development by ACC. The combination of filtering and TF DEACoN used here can be applied to any group of co-regulated genes to predict GRNs that control coordinated transcriptional responses.more » « less
-
ABSTRACT Inspired by Waddington's illustration of an epigenetic landscape, cell-fate transitions have been envisioned as bifurcating dynamical systems, wherein exogenous signaling dynamics couple to the enormously complex signaling and transcriptional machinery of a cell to elicit qualitative transitions in its collective state. Single-cell RNA sequencing (scRNA-seq), which measures the distributions of possible transcriptional states in large populations of differentiating cells, provides an alternate view, in which development is marked by the variations of a myriad of genes. Here, we present a mathematical formalism for rigorously evaluating, from a dynamical systems perspective, whether scRNA-seq trajectories display statistical signatures consistent with bifurcations and, as a case study, pinpoint regions of multistability along the neutrophil branch of hematopoeitic differentiation. Additionally, we leverage the geometric features of linear instability to identify the low-dimensional phase plane in gene expression space within which the multistability unfolds, highlighting novel genetic players that are crucial for neutrophil differentiation. Broadly, we show that a dynamical systems treatment of scRNA-seq data provides mechanistic insights into the high-dimensional processes of cellular differentiation, taking a step toward systematic construction of mathematical models for transcriptomic dynamics.more » « less
An official website of the United States government

