skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microfluidic Devices for Magnetic Separation of Biological Particles: A Review
Abstract Separation of microparticles and cells serves a critical step in many applications such as in biological analyses, food production, chemical processing, and medical diagnostics. Sorting on the microscale exhibits certain advantages in comparison with that on the macroscale as it requires minuscule sample or reagents volume and thus reduced analysis cycle time, smaller size of devices, and lower fabrication costs. Progresses have been made over time to improve the efficiency of these microscale particle manipulation techniques. Many different techniques have been used to attain accurate particle sorting and separation in a continuous manner on the microscale level, which can be categorized as either passive or active methods. Passive techniques achieve accurate manipulation of particles through their interaction with surrounding flow by carefully designed channel structures, without using external fields. As an alternative, active techniques utilize external fields (e.g., acoustic, electronic, optical, and magnetic field, etc.) to realize desired pattern of motion for particles with specific properties. Among numerous active methods for microfluidic particle sorting, the magnetic field has been widely used in biomedical and chemical applications to achieve mixing, focusing, and separating of reagents and bioparticles. This paper aims to provide a thorough review on the classic and most up-to-date magnetic sorting and separation techniques to manipulate microparticles including the discussions on the basic concept, working principle, experimental details, and device performance.  more » « less
Award ID(s):
1920039
PAR ID:
10439818
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Medical Devices
Volume:
15
Issue:
2
ISSN:
1932-6181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report on a new class of magnetoactive elastomers (MAEs) based on bottlebrush polymer networks filled with carbonyl iron microparticles. By synergistically combining solvent-free, yet supersoft polymer matrices, with magnetic microparticles, we enable the design of composites that not only mimic the mechanical behavior of various biological tissues but also permit contactless regulation of this behavior by external magnetic fields. While the bottlebrush architecture allows to finely tune the matrix elastic modulus and strain-stiffening, the magnetically aligned microparticles generate a 3-order increase in shear modulus accompanied by a switch from a viscoelastic to elastic regime as evidenced by a ca. 10-fold drop of the damping factor. The developed method for MAE preparation through solvent-free coinjection of bottlebrush melts and magnetic particles provides additional advantages such as injection molding of various shapes and uniform particle distribution within MAE composites. The synergistic combination of bottlebrush network architecture and magnetically responsive microparticles empowers new opportunities in the design of actuators and active vibration insulation systems. 
    more » « less
  2. The rapid development of micro/nanomanipulation technologies has opened unprecedented opportunities for the sorting, assembly, and actuation of biological and inorganic entities for applications ranging from live‐cell separation, drug screening, biosensing to micro/nanomachines and nanorobots. To this end, remarkable progress has been made in the development of efficient, precise, and versatile nanomanipulation techniques based on individual or combined chemical and physical fields. Among them, techniques that fuse light stimuli with electric (E) fields, have achieved impressive performance in the versatility, reconfigurability, and throughput in the manipulation of both biological and inorganic micro/nanoscale objects compared to those of many other manipulation techniques, by leveraging the strong optoelectric coupling effect of semiconductor materials. This work provides a review of various types of light‐gated electric manipulation systems – the working principles, experimental setups, limitations, applications, and future perspectives. 
    more » « less
  3. Microrheology encompasses a range of methods to measure the mechanical properties of soft materials. By characterizing the motion of embedded microscopic particles, microrheology extends the probing length scale and frequency range of conventional bulk rheology. Microrheology can be characterized into either passive or active methods based on the driving force exerted on probe particles. Tracer particles are driven by thermal energy in passive methods, applying minimal deformation to the assessed medium. In active techniques, particles are manipulated by an external force, most commonly produced through optical and magnetic fields. Small-scale rheology holds significant advantages over conventional bulk rheology, such as eliminating the need for large sample sizes, the ability to probe fragile materials non-destructively, and a wider probing frequency range. More importantly, some microrheological techniques can obtain spatiotemporal information of local microenvironments and accurately describe the heterogeneity of structurally complex fluids. Recently, there has been significant growth in using these minimally invasive techniques to investigate a wide range of biomedical systems both in vitro and in vivo . Here, we review the latest applications and advancements of microrheology in mammalian cells, tissues, and biofluids and discuss the current challenges and potential future advances on the horizon. 
    more » « less
  4. Abstract In this study, we discuss the characterization and quantification of composite microstructures formed by the external field manipulation of high aspect ratio magnetic particles in an elastomeric matrix. In our prior work, we have demonstrated that the simultaneous application of electric and magnetic fields on hard magnetic particles with geometric anisotropy can create a hierarchy of structures at different length scales, which can be used to achieve a wide range of properties. We aim to characterize these hierarchical structures and relate them to final composite properties so we can achieve our ultimate goal of designing a material for a prescribed performance. The complex particle structures are formed during processing by using electric and magnetic fields, and they are then locked-in by curing the polymer matrix around the particles. The model materials used in the study are barium hexaferrite (BHF) particles and polydimethylsiloxane (PDMS) elastomer. BHF was selected for its hard magnetic properties and high geometric anisotropy. PDMS was selected for its good mechanical properties and its tunable curing kinetics. The resulting BHF-PDMS composites are magnetoactive, i.e., they will deform and actuate in response to magnetic fields. In order to investigate the resulting particle orientation, distribution and alignment and to predict the composite’s macro scale properties, we developed techniques to quantify the particle structures. The general framework we developed allows us to quantify and directly compare the microstructures created within the composites. To identify structures at the different length scales, images of the composite are taken using both optical microscopy and scanning electron microscopy. We then use ImageJ to analyze them and gather data on particle size, location, and orientation angle. The data is then exported to MATLAB, and is used to run a Minimum Spanning Tree Algorithm to classify the particle structures, and von Mises Distributions to quantify the alignment of said structures. Important findings show 1) the ability to control structure using a combination of external electric, magnetic and thermal fields; 2) that electric fields promote long range order while magnetic fields promote short-range order; and 3) the resulting hierarchical structure greatly influence bulk material properties. Manipulating particles in a composite material is technologically important because changes in microstructure can alter the properties of the bulk material. The multifield processing we investigate here can form the basis for next generation additive manufacturing platforms where desired properties are tailored locally through in-situ hierarchical control of particle arrangements. 
    more » « less
  5. Massive growth of the microfluidics field has triggered numerous advances in focusing, separating, ordering, concentrating, and mixing of microparticles. Microfluidic systems capable of performing these functions are rapidly finding applications in industrial, environmental, and biomedical fields. Passive and label-free methods are one of the major categories of such systems that have received enormous attention owing to device operational simplicity and low costs. With new platforms continuously being proposed, our aim here is to provide an updated overview of the state of the art for passive label-free microparticle separation, with emphasis on performance and operational conditions. In addition to the now common separation approaches using Newtonian flows, such as deterministic lateral displacement, pinched flow fractionation, cross-flow filtration, hydrodynamic filtration, and inertial microfluidics, we also discuss separation approaches using non-Newtonian, viscoelastic flow. We then highlight the newly emerging approach based on shear-induced diffusion, which enables direct processing of complex samples such as untreated whole blood. Finally, we hope that an improved understanding of label-free passive sorting approaches can lead to sophisticated and useful platforms toward automation in industrial, environmental, and biomedical fields. 
    more » « less