skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Gate-tunable modulation of the optical properties of multilayer graphene by the reversible intercalation of ionic liquid anions

We demonstrate a substantial modulation of the optical properties of multilayer graphene (∼100 layers) using a simple device consisting of a multilayer graphene/polymer electrolyte membrane/gold film stack. Applying a voltage of 3–4 V drives the intercalation of anion [TFSI]− [ion liquid diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide [DEME][TFSI]] resulting in the reversible modulation of the properties of this optically dense material. Upon intercalation, we observe an abrupt shift of 35 cm−1 in the G band Raman mode, an abrupt increase in FTIR reflectance over the wavelength range from 1.67 to 5 μm (2000–6000 cm−1), and an abrupt increase in luminescent background observed in the Raman spectra of graphene. All of these abrupt changes in the optical properties of this material arise from the intercalation of the TFSI− ion and the associated change in the free carrier density (Δn = 1020 cm−3). Suppression of the 2D band Raman mode observed around 3 V corresponds to Pauli blocking of the double resonance Raman process and indicates a modulation of the Fermi energy of ΔEF = 1.1 eV.

 
more » « less
Award ID(s):
2012845
NSF-PAR ID:
10440001
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
9
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects.  In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.

     
    more » « less
  2. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

     
    more » « less
  3. Abstract

    The development of next‐generation electrodes for metal‐ion batteries requires an understanding of intercalation dynamics in nanomaterials. Herein, it is shown that microscale mechanical strain significantly affects the formation of ordered lithium phases in graphene. In situ Raman spectroscopy of graphene microflakes mechanically constrained at the edge during lithium intercalation reveals a thickness‐dependent increase of up to 1.26 V in the electrochemical potential that induces lithium staging. While the induced mechanical strain energy increases with graphene thickness to the fourth power, its magnitude is small compared to the observed increase in electrochemical energy. It is hypothesized that the mechanical strain energy increases a nucleation barrier for lithium staging, greatly delaying the formation of ordered lithium phases. These results indicate that electrode assembly may critically impact lithium staging dynamics. The present work demonstrates strain engineering in two dimensional (2D) nanomaterials as an effective approach to manipulate phase transitions and chemical reactivity.

     
    more » « less
  4. Abstract

    The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2V−1s−1with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W−1and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs.

     
    more » « less
  5. Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge 0.97 Sn 0.03 /AlAs; (ii) a 0.81% compressively strained Ge 0.94 Sn 0.06 /Ge; and (iii) a lattice matched Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge–Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge 0.94 Sn 0.06 alloy was determined as b = 314.81 ± 14 cm −1 . Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of E g,Γ = 0.72 eV and E g,L = 0.66 eV for 0.81% compressively strained Ge 0.94 Sn 0.06 , and E g,Γ = 0.73 eV and E g,L = 0.68 eV for lattice matched Ge 0.94 Sn 0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of Δ E V = 0.91 ± 0.1 eV and conduction band offset of Δ E C,Γ–X = 0.64 ± 0.1 eV were determined from the Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device. 
    more » « less