Abstract The development of next‐generation electrodes for metal‐ion batteries requires an understanding of intercalation dynamics in nanomaterials. Herein, it is shown that microscale mechanical strain significantly affects the formation of ordered lithium phases in graphene. In situ Raman spectroscopy of graphene microflakes mechanically constrained at the edge during lithium intercalation reveals a thickness‐dependent increase of up to 1.26 V in the electrochemical potential that induces lithium staging. While the induced mechanical strain energy increases with graphene thickness to the fourth power, its magnitude is small compared to the observed increase in electrochemical energy. It is hypothesized that the mechanical strain energy increases a nucleation barrier for lithium staging, greatly delaying the formation of ordered lithium phases. These results indicate that electrode assembly may critically impact lithium staging dynamics. The present work demonstrates strain engineering in two dimensional (2D) nanomaterials as an effective approach to manipulate phase transitions and chemical reactivity.
more »
« less
Gate-tunable modulation of the optical properties of multilayer graphene by the reversible intercalation of ionic liquid anions
We demonstrate a substantial modulation of the optical properties of multilayer graphene (∼100 layers) using a simple device consisting of a multilayer graphene/polymer electrolyte membrane/gold film stack. Applying a voltage of 3–4 V drives the intercalation of anion [TFSI]− [ion liquid diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide [DEME][TFSI]] resulting in the reversible modulation of the properties of this optically dense material. Upon intercalation, we observe an abrupt shift of 35 cm−1 in the G band Raman mode, an abrupt increase in FTIR reflectance over the wavelength range from 1.67 to 5 μm (2000–6000 cm−1), and an abrupt increase in luminescent background observed in the Raman spectra of graphene. All of these abrupt changes in the optical properties of this material arise from the intercalation of the TFSI− ion and the associated change in the free carrier density (Δn = 1020 cm−3). Suppression of the 2D band Raman mode observed around 3 V corresponds to Pauli blocking of the double resonance Raman process and indicates a modulation of the Fermi energy of ΔEF = 1.1 eV.
more »
« less
- Award ID(s):
- 2012845
- PAR ID:
- 10440001
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 9
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lateral p–n junctions take the unique advantages of 2D materials, such as graphene, to enable single‐atomic layer microelectronics. A major challenge in fabrication of the lateral p–n junctions is in the control of electronic properties on a 2D atomic sheet with nanometer precision. Herein, a facile approach that employs decoration of molecular anions of bis‐(trifluoromethylsulfonyl)‐imide (TFSI) to generate p‐doping on the otherwise n‐doped graphene by positively polarized surface electric dipoles (pointing toward the surface) formed on the surface oxygen‐deficient layer “intrinsic” to an oxide ferroelectric back gate is reported. The characteristic double conductance minimaVDirac−andVDirac+illustrated in the obtained lateral graphene p–n junctions can be tuned in the range of −1 to 0 V and 0 to +1 V, respectively, by controlling the TFSI anions and surface dipoles quantitatively. The unique advantage of this approach is in adoption of polarity‐controlled molecular ion attachment on graphene, which could be further developed for various lateral electronics on 2D materials.more » « less
-
Porous graphene and graphite are increasingly utilized in electrochemical energy storage and solar-thermal applications due to their unique structural and thermal properties. In this study, we conduct a comprehensive analysis of the lattice thermal transport and spectral phonon characteristics of holey graphite and multilayer graphene. Our results reveal that phonon modes propagating obliquely with respect to the graphene basal planes are the primary contributors to cross-plane thermal transport. These modes exhibit a predominantly ballistic nature, resulting in an almost linear increase in cross-plane thermal conductivity with the number of layers. The presence of nanoholes in graphene induces a broadband suppression of cross-plane phonon transport, whereas lithium-ion intercalation shows potential to enhance it. These findings provide critical insights into the mechanisms governing cross-plane heat conduction in key graphene-based structures, offering valuable guidance for thermal management and engineering of van der Waals materials.more » « less
-
Abstract Reconfiguration of chiral ceramic nanostructures after ion intercalation should favor specific nanoscale twists leading to strong chiroptical effects. In this work, V2O3nanoparticles are shown to have “built‐in” chiral distortions caused by binding of tartaric acid enantiomers to the nanoparticle surface. As evidenced by spectroscopy/microscopy techniques and calculations of nanoscale chirality measures, the intercalation of Zn2+ions into the V2O3lattice results in particle expansion, untwist deformations, and chirality reduction. Coherent deformations in the particle ensemble manifest as changes in sign and positions of circular polarization bands at ultraviolet, visible, mid‐infrared (IR), near‐IR (NIR), and IR wavelengths. Theg‐factors observed for IR and NIR spectral diapasons are ≈100–400 times higher than those for previously reported dielectric, semiconductor, and plasmonic nanoparticles. Nanocomposite films layer‐by‐layer assembled (LBL) from V2O3nanoparticles reveal cyclic‐voltage‐driven modulation of optical activity. Device prototypes for IR and NIR range problematic for liquid crystals and other organic materials are demonstrated. High optical activity, synthetic simplicity, sustainable processability, and environmental robustness of the chiral LBL nanocomposites provide a versatile platform for photonic devices. Similar reconfigurations of particle shapes are expected for multiple chiral ceramic nanostructures, leading to unique optical, electrical, and magnetic properties.more » « less
-
We apply the density-functional theory to study various phases (including non-magnetic (NM), anti-ferromagnetic (AFM), and ferromagnetic (FM)) in monolayer magnetic chromium triiodide (CrI 3 ), a recently fabricated 2D magnetic material. It is found that: (1) the introduction of magnetism in monolayer CrI 3 gives rise to metal-to-semiconductor transition; (2) the electronic band topologies as well as the nature of direct and indirect band gaps in either AFM or FM phases exhibit delicate dependence on the magnetic ordering and spin–orbit coupling; and (3) the phonon modes involving Cr atoms are particularly sensitive to the magnetic ordering, highlighting distinct spin–lattice and spin–phonon coupling in this magnet. First-principles simulations of the Raman spectra demonstrate that both frequencies and intensities of the Raman peaks strongly depend on the magnetic ordering. The polarization dependent A 1g modes at 77 cm −1 and 130 cm −1 along with the E g mode at about 50 cm −1 in the FM phase may offer a useful fingerprint to characterize this material. Our results not only provide a detailed guiding map for experimental characterization of CrI 3 , but also reveal how the evolution of magnetism can be tracked by its lattice dynamics and Raman response.more » « less
An official website of the United States government
