skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Formal recognition of host‐generalist species of dinoflagellate ( Cladocopium , Symbiodiniaceae) mutualistic with Indo‐Pacific reef corals
Abstract

The existence of widespread species with the capacity to endure diverse, or variable, environments are of importance to ecological and genetic research, and conservation. Such “ecological generalists” are more likely to have key adaptations that allow them to better tolerate the physiological challenges of rapid climate change. Reef‐building corals are dependent on endosymbiotic dinoflagellates (Family: Symbiodiniaceae) for their survival and growth. While these symbionts are biologically diverse, certain genetic types appear to have broad geographic distributions and are mutualistic with various host species from multiple genera and families in the order Scleractinia that must acquire their symbionts through horizontal transmission. Despite the considerable ecological importance of putative host‐generalist symbionts, they lack formal species descriptions. In this study, we used molecular, ecological, and morphological evidence to verify the existence of five new host‐generalist species in the symbiodiniacean genusCladocopium. Their geographic distribution and prevalence among host communities corresponds to prevailing environmental conditions at both regional and local scales. The influence that each species has on host physiology may partially explain regional differences in thermal sensitivities among coral communities. The potential increased prevalence of a generalist species that endures environmental instability is a consequential ecological response to warming oceans. Large‐scale shifts in symbiont dominance could ensure reef coral persistence and productivity in the near term. Ultimately, these formal designations should advance scientific communication and generate informed research questions on the physiology and ecology of coral‐dinoflagellate mutualisms.

 
more » « less
Award ID(s):
1719684
PAR ID:
10440074
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
59
Issue:
4
ISSN:
0022-3646
Page Range / eLocation ID:
p. 698-711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many broadly‐dispersing corals acquire their algal symbionts (Symbiodiniaceae) “horizontally” from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence ofCladocopiumalgal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with a variety of multilocus genotypes (MLG) within two genetically distinctCladocopiumlineages (C40, C21), confirming thatAcroporacoral hosts associate with a range ofCladocopiumsymbionts across this region. Both C40 and C21 included multiple asexual lineages bearing identical MLGs, many of which spanned host species, reef sites within islands, and even different islands. Both C40 and C21 exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral‐associatedCladocopiumcommunities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersingAcroporacoral species.

     
    more » « less
  2. Abstract

    Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef‐building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high‐ and low‐light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross‐paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.

     
    more » « less
  3. Banaszak, A (Ed.)

    Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.

     
    more » « less
  4. Abstract

    The symbiotic relationship between dinoflagellate algae in the family Symbiodiniaceae and scleractinian corals forms the base of the tropical reef ecosystem. In scleractinian corals, recruits acquire symbionts either “vertically” from the maternal colony or initially lack symbionts and acquire them “horizontally” from the environment. Regardless of the mode of acquisition, coral species and individual colonies harbor only a subset of the highly diverse complex of species/taxa within the Symbiodiniaceae. This suggests a genetic basis for specificity, but local environmental conditions and/or symbiont availability may also play a role in determining which symbionts within the Symbiodiniaceae are initially taken up by the host. To address the relative importance of genetic and environmental drivers of symbiont uptake/establishment, we examined the acquisition of these dinoflagellate symbionts in one to three‐month‐old recruits ofOrbicella faveolatato compare symbiont types present in recruits to those of parental populations versus co‐occurring adults in their destination reef. Variation in chloroplast 23S ribosomal DNA and in three polymorphic microsatellite loci was examined. We found that, in general, symbiont communities within adult colonies differed between reefs, suggesting that endemism is common among symbiont populations ofO. faveolataon a local scale. Among recruits, initial symbiont acquisition was selective.O. faveolatarecruits only acquired a subset of locally available symbionts, and these generally did not reflect symbiont populations in adults at either the parental or the outplant reef. Instead, symbiont communities within new recruits at a given outplant site and region tended to be similar to each other, regardless of parental source population. These results suggest temporal variation in the local symbiont source pool, although other possible drivers behind the distinct difference between symbionts withinO. faveolataadults and new generations of recruits may include different ontogenetic requirements and/or reduced host selectivity in early ontogeny.

     
    more » « less
  5. ABSTRACT

    Symbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10–100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer—yet ecologically and evolutionarily relevant—scales. Here, we mapped short reads from 271 holobiont genome libraries of individualAcropora hyacinthuscolonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure. Utilizing this low‐pass method, we assayed over 13,000 bases from every individual, enabling us to discern genetic variation at a finer geographic scale than previously reported at the population level. We identified five commonCladocopiumchloroplast SNP profiles present across Palau, with symbiont structure varying between Northern, mid‐lagoon, and Southern regions, and inshore–offshore gradients. Although symbiont populations within reefs typically contained significant genetic diversity, we also observed genetic structure between some nearby reefs. To explore whether coral hosts retain their symbionts post‐transplantation, we experimentally moved 79 corals from their native reefs to transplant sites with both different and similar chloroplast SNP profiles. Over 12 months, we observed 12 instances where transplanted corals changed profiles, often transitioning to a profile present in adjacent corals. Symbiont genetic structure between reefs suggests either low dispersal of symbionts or environmental selection against dispersers, both resulting in the potential for significant adaptive differentiation across reef environments. The extent to which local corals and their symbionts are co‐adapted to environments on a reef‐by‐reef scale is currently poorly known. Chloroplast sequences offer an additional tool for monitoring symbiont genetics and coral–symbiont interactions when assisted migration is used in restoration.

     
    more » « less