skip to main content

Title: Feedback lock-in: A versatile multi-terminal measurement system for electrical transport devices

We present the design and implementation of a measurement system that enables parallel drive and detection of small currents and voltages at numerous electrical contacts to a multi-terminal electrical device. This system, which we term a feedback lock-in, combines digital control-loop feedback with software-defined lock-in measurements to dynamically source currents and measure small, pre-amplified potentials. The effective input impedance of each current/voltage probe can be set via software, permitting any given contact to behave as an open-circuit voltage lead or as a virtually grounded current source/sink. This enables programmatic switching of measurement configurations and permits measurement of currents at multiple drain contacts without the use of current preamplifiers. Our 32-channel implementation relies on commercially available digital input/output boards, home-built voltage preamplifiers, and custom open-source software. With our feedback lock-in, we demonstrate differential measurement sensitivity comparable to a widely used commercially available lock-in amplifier and perform efficient multi-terminal electrical transport measurements on twisted bilayer graphene and SrTiO3 quantum point contacts. The feedback lock-in also enables a new style of measurement using multiple current probes, which we demonstrate on a ballistic graphene device.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Designing ultrasensitive detectors often requires complex architectures, high‐voltage operations, and sophisticated low‐noise measurements. In this work, it is shown that simple low‐bias two‐terminal DC‐conductance values of graphene and single‐walled carbon nanotubes are extremely sensitive to ionized gas molecules. Incident ions form an electrode‐free, dielectric‐ or electrolyte‐free, bias‐free vapor‐phase top‐gate that can efficiently modulate carrier densities up to ≈0.6 × 1013cm−2. Surprisingly, the resulting current changes are several orders of magnitude larger than that expected from conventional electrostatic gating, suggesting the possible role of a current‐gain inducing mechanism similar to those seen in photodetectors. These miniature detectors demonstrate charge–current amplification factor values exceeding 108A C−1in vacuum with undiminished responses in open air, and clearly distinguish between positive and negative ions sources. At extremely low rates of ion incidence, detector currents show stepwise changes with time, and calculations suggest that these stepwise changes can result from arrival of individual ions. These sensitive ion detectors are used to demonstrate a proof‐of‐concept low‐cost, amplifier‐free, light‐emitting‐diode‐based low‐power ion‐indicator.

    more » « less
  2. Abstract

    In a Josephson junction (JJ) at zero bias, Cooper pairs are transported between two superconducting contacts via the Andreev bound states (ABSs) formed in the Josephson channel. Extending JJs to multiple superconducting contacts, the ABSs in the Josephson channel can coherently hybridize Cooper pairs among different superconducting electrodes. Biasing three-terminal JJs with antisymmetric voltages, for example, results in a direct current (DC) of Cooper quartet (CQ), which involves a four-fermion entanglement. Here, we report half a flux periodicity in the interference of CQ formed in graphene based multi-terminal (MT) JJs with a magnetic flux loop. We observe that the quartet differential conductance associated with supercurrent exhibits magneto-oscillations associated with a charge of 4e, thereby presenting evidence for interference between different CQ processes. The CQ critical current shows non-monotonic bias dependent behavior, which can be modeled by transitions between Floquet-ABSs. Our experimental observation for voltage-tunable non-equilibrium CQ-ABS in flux-loop-JJs significantly extends our understanding of MT-JJs, enabling future design of topologically unique ABS spectrum.

    more » « less
  3. Nanoscale infrared (nano-IR) microscopy enables label-free chemical imaging with a spatial resolution below Abbe's diffraction limit through the integration of atomic force microscopy and infrared radiation. Peak force infrared (PFIR) microscopy is one of the emerging nano-IR methods that provides non-destructive multimodal chemical and mechanical characterization capabilities using a straightforward photothermal signal generation mechanism. PFIR microscopy has been demonstrated to work for a wide range of heterogeneous samples, and it even allows operation in the fluid phase. However, the current PFIR microscope requires customized hardware configuration and software programming for real-time signal acquisition and processing, which creates a high barrier to PFIR implementation. In this communication, we describe a type of lock-in amplifier-based PFIR microscopy that can be assembled with generic, commercially available equipment without special hardware or software programming. We demonstrate this method on soft matters of structured polymer blends and blocks, as well as biological cells of E. coli . The lock-in amplifier-based PFIR reduces the entry barrier for PFIR microscopy and makes it a competitive nano-IR method for new users. 
    more » « less
  4. Evaporation-driven spontaneous capillary flow presents a promising approach for driving electrolytes through electrically charged channels and pores in electrokinetic energy conversion devices. However, there are no literature reports of detailed flow visualization in these systems and/or experimental observations relating the liquid velocity and evaporation rate to the generated voltage and current. In this manuscript, we describe such a visualization study for a glass channel based electrokinetic energy conversion device with one of its channel terminals left open to ambient air for facilitating the evaporation process. Fluorescence microscopy was used to measure the liquid velocity in the electrokinetic energy conversion channel by observing the advancement of an electrolyte solution dyed with a neutral tracer. The accumulation of the same dye tracer was also imaged at the open terminal of this glass conduit to estimate the rate of solvent evaporation, which was found to be consistent with the flow velocity measurements. Additionally, an electrochemical analyzer was employed to record the electrical voltage and current produced by the device under different operating conditions. The highest electrical power output was derived in our experiments upon flowing de-ionized water through a 1 μm deep channel, which also produced the fastest liquid velocity in it. Moreover, the energy conversion efficiency of our device was observed to increase for shallower channels and lower ionic strength electrolytes, consistent with previous literature reports on electrokinetic energy conversion platforms.

    more » « less
  5. Abstract

    Marine organisms and ecosystems face multiple, temporally variable stressors in a rapidly changing world. Realistic experiments that incorporate these aspects of physiological stress are important for advancing our ability to understand, predict, and manage their ecological impacts. However, the experimental systems needed to conduct such experiments can be costly. Here, we describe a low‐cost, modular control system that can be used with seawater sensors and actuators to dynamically manipulate multiple seawater variables. It enables researchers to run a variety of realistic multiple‐stressor, variable exposure experiments with a range of marine organisms. This tank controller system is based on the open‐source Arduino prototyping platform and features a custom‐made circuit board with a 16‐bit analog‐to‐digital converter, a real‐time clock, a MicroSD memory card reader, a high‐voltage transistor array, and solderless screw terminal connectors for easy connection of sensors, actuators, and power supplies. The assembly and use of this controller system does not require extensive electronics engineering or programming experience, and each module can be assembled for under 80 USD in parts. To demonstrate the system's capabilities, we present seawater manipulations from experiments involving (1) simultaneous manipulations of dissolved oxygen and pH; (2) fluctuating dissolved oxygen levels; and (3) a controlled stepwise decrease in dissolved oxygen at different temperatures. The low cost and high customizability of this Arduino‐based control system can contribute to expanding capacities for running global change experiments for researchers and students worldwide.

    more » « less