Abstract Swimming microorganisms switch between locomotory gaits to enable complex navigation strategies such as run-and-tumble to explore their environments and search for specific targets. This ability of targeted navigation via adaptive gait-switching is particularly desirable for the development of smart artificial microswimmers that can perform complex biomedical tasks such as targeted drug delivery and microsurgery in an autonomous manner. Here we use a deep reinforcement learning approach to enable a model microswimmer to self-learn effective locomotory gaits for translation, rotation and combined motions. The Artificial Intelligence (AI) powered swimmer can switch between various locomotory gaits adaptively to navigate towards target locations. The multimodal navigation strategy is reminiscent of gait-switching behaviors adopted by swimming microorganisms. We show that the strategy advised by AI is robust to flow perturbations and versatile in enabling the swimmer to perform complex tasks such as path tracing without being explicitly programmed. Taken together, our results demonstrate the vast potential of these AI-powered swimmers for applications in unpredictable, complex fluid environments.
more »
« less
Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination
Abstract Biological microswimmers can coordinate their motions to exploit their fluid environment—and each other—to achieve global advantages in their locomotory performance. These cooperative locomotion require delicate adjustments of both individual swimming gaits and spatial arrangements of the swimmers. Here we probe the emergence of such cooperative behaviors among artificial microswimmers endowed with artificial intelligence. We present the first use of a deep reinforcement learning approach to empower the cooperative locomotion of a pair of reconfigurable microswimmers. The AI-advised cooperative policy comprises two stages: an approach stage where the swimmers get in close proximity to fully exploit hydrodynamic interactions, followed a synchronization stage where the swimmers synchronize their locomotory gaits to maximize their overall net propulsion. The synchronized motions allow the swimmer pair to move together coherently with an enhanced locomotion performance unattainable by a single swimmer alone. Our work constitutes a first step toward uncovering intriguing cooperative behaviors of smart artificial microswimmers, demonstrating the vast potential of reinforcement learning towards intelligent autonomous manipulations of multiple microswimmers for their future biomedical and environmental applications.
more »
« less
- Award ID(s):
- 1830958
- PAR ID:
- 10440244
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The use of machine learning techniques in the development of microscopic swimmers has drawn considerable attention in recent years. In particular, reinforcement learning has been shown useful in enabling swimmers to learn effective propulsion strategies through its interactions with the surroundings. In this work, we apply a reinforcement learning approach to identify swimming gaits of a multi-link model swimmer. The swimmer consists of multiple rigid links connected serially with hinges, which can rotate freely to change the relative angles between neighboring links. Purcell [“Life at low Reynolds number,” Am. J. Phys. 45, 3 (1977)] demonstrated how the particular case of a three-link swimmer (now known as Purcell's swimmer) can perform a prescribed sequence of hinge rotation to generate self-propulsion in the absence of inertia. Here, without relying on any prior knowledge of low-Reynolds-number locomotion, we first demonstrate the use of reinforcement learning in identifying the classical swimming gaits of Purcell's swimmer for case of three links. We next examine the new swimming gaits acquired by the learning process as the number of links increases. We also consider the scenarios when only a single hinge is allowed to rotate at a time and when simultaneous rotation of multiple hinges is allowed. We contrast the difference in the locomotory gaits learned by the swimmers in these scenarios and discuss their propulsion performance. Taken together, our results demonstrate how a simple reinforcement learning technique can be applied to identify both classical and new swimming gaits at low Reynolds numbers.more » « less
-
Biological and artificial microswimmers often encounter fluid media with non-Newtonian rheological properties. In particular, many biological fluids such as blood and mucus are shear-thinning. Recent studies have demonstrated how shear-thinning rheology can impact substantially the propulsion performance in different manners. In this work, we examine the effect of geometrical shape upon locomotion in a shear-thinning fluid using a prolate spheroidal squirmer model. We use a combination of asymptotic analysis and numerical simulations to quantify how particle geometry impacts the speed and the energetic cost of swimming. The results demonstrate the advantages of spheroidal over spherical swimmers in terms of both swimming speed and energetic efficiency when squirming through a shear-thinning fluid. More generally, the findings suggest the possibility of tuning the swimmer geometry to better exploit non-Newtonian rheological behaviours for more effective locomotion in complex fluids.more » « less
-
Swimming at the microscale has recently garnered substantial attention due to the fundamental biological significance of swimming microorganisms and the wide range of biomedical applications for artificial microswimmers. These microswimmers invariably find themselves surrounded by different confining boundaries, which can impact their locomotion in significant and diverse ways. In this work, we employ a widely used three-sphere swimmer model to investigate the effect of confinement on swimming at low Reynolds numbers. We conduct theoretical analysis via the point-particle approximation and numerical simulations based on the finite element method to examine the motion of the swimmer along the centerline in a capillary tube. The axisymmetric configuration reduces the motion to one-dimensional movement, which allows us to quantify how the degree of confinement affects the propulsion speed in a simple manner. Our results show that the confinement does not significantly affect the propulsion speed until the ratio of the radius of the tube to the radius of the sphere is in the range of O(1)−O(10), where the swimmer undergoes substantial reduction in its propulsion speed as the radius of the tube decreases. We provide some physical insights into how reduced hydrodynamic interactions between moving spheres under confinement may hinder the propulsion of the three-sphere swimmer. We also remark that the reduced propulsion performance stands in stark contrast to the enhanced helical propulsion observed in a capillary tube, highlighting how the manifestation of confinement effects can vary qualitatively depending on the propulsion mechanisms employed by the swimmers.more » « less
-
null (Ed.)Some micro-organisms and artificial micro-swimmers propel at low Reynolds numbers (Re) via the interaction of their flexible appendages with the surrounding fluid. While their locomotion has been extensively studied with a Newtonian fluid assumption, in realistic biological environments these micro-swimmers invariably encounter rheologically complex fluids. In particular, many biological fluids such as blood and different types of mucus have shear-thinning viscosities. The influence of this ubiquitous non-Newtonian rheology on the performance of flexible swimmers remains largely unknown. Here, we present a first study to examine how shear-thinning rheology alters the fluid-structure interaction and hence the propulsion performance of elastic swimmers at low Re. Via a simple elastic swimmer actuated magnetically, we demonstrate that shear-thinning rheology can either enhance or hinder elastohydrodynamic propulsion, depending on the intricate interplay between elastic and viscous forces as well as the magnetic actuation. We also use a reduced-order model to elucidate the mechanisms underlying the enhanced and hindered propulsion observed in different physical regimes. These results and improved understanding could guide the design of flexible micro-swimmers in non-Newtonian fluids.more » « less