skip to main content


Title: Nanoscale thermal interface rectification in the quantum regime

To enable the on-demand control of heat flow for sustainable energy solutions, we have been longing for functional thermal components at the nanoscale, in analogue to electronic diodes and transistors. Understanding and discovering fundamental mechanisms that drive thermal rectification are critical to advancing this field. Different mechanisms have been proposed for thermal rectification effects in the classical regime. Using anharmonic atomistic Green's function, we discovered a thermal rectification phenomenon in the quantum regime for nanometer-thick three-dimensional solid interfaces. We found that the anharmonic phonon scatterings across the interface act on the temperature-dependent phonon populations on both sides of the interface, generating the necessary nonlinearity to achieve thermal rectification. This intrinsic thermal interface rectification is a universal phenomenon that can be observed and engineered for nanoscale interfaces.

 
more » « less
NSF-PAR ID:
10440263
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
12
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices 1 , modulation of thermal transport 2 and novel nanostructured thermoelectric materials 3–5 . Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity 2 . There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon–germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics. 
    more » « less
  2. null (Ed.)
    Breakdown of Fourier law of heat conduction at nanometer length scales significantly diminishes thermal conductivity, leading to challenges in thermal management of nanoelectronic applications. In this work we demonstrate using first-principles computations that biaxial strain can enhance k at a nanoscale in boron phosphide (BP), yielding nanoscale k values that exceed even the bulk k value of silicon. At a length scale of L = 200 nm, k of 4% biaxially strained BP is enhanced by 25% to a value of 150.4 W m −1 K −1 , relative to 120 W m −1 K −1 computed for unstrained BP at 300 K. The enhancement in k at a nanoscale is found to be due to the suppression of anharmonic scattering in the higher frequency range where phonon meanfreepaths are in nanometers, mediated by an increase in the phonon band gap in strained BP. Such a suppression in scattering enhances the meanfreepaths in the nanometer regime, thus enhancing nanoscale k . First-principles computations based on deriving harmonic and anharmonic force interactions from density-functional theory are used to provide detailed understanding of the effect in terms of individual scattering channels. 
    more » « less
  3. Abstract

    The theoretical investigation of heat dissipation for polymer‐bonded explosives (PBXs) is in high demand in explosive design in terms of safety and realibility, particularly as lack of effective experimental measurements. Here, we investigate the fundamental understanding of thermal transport across the heterogeneous interface between HMX and PVDF, by using the diffuse mismatch model and anharmonic inelastic model. This work explores the interfacial thermal conductance viaab initiocalculation and derived phonon dispersions, phonon group velocities. For HMX‐PVDF interface, it is shown that low‐frequency phonon modes (especially lower than 10 THz) and two‐phonon elastic processes play dominant roles in the interface thermal transport. Furthermore, we present the calculated interfacial thermal conductance as a function of temperature. The thermal conductivity of mixture HMX‐PVDF system is analyzed with an effective medium approximation model. From these calculations, we give the thermal transport properties predictions of PBX for thermal conductivity enhancement and provides fundamental microscopic insights into phonon transport physics in PBX.

     
    more » « less
  4. Abstract

    Thermal rectification is an exotic thermal transport phenomenon which allows heat to transfer in one direction but block the other. We demonstrate an unusual dual-mode solid-state thermal rectification effect using a heterogeneous “irradiated-pristine” polyethylene nanofiber junction as a nanoscale thermal diode, in which heat flow can be rectified in both directions by changing the working temperature. For the nanofiber samples measured here, we observe a maximum thermal rectification factor as large as ~50%, which only requires a small temperature bias of <10 K. The tunable nanoscale thermal diodes with large rectification and narrow temperature bias open up new possibilities for developing advanced thermal management, energy conversion and, potentially thermophononic technologies.

     
    more » « less
  5. Understanding nanoscale thermal transport is critical for nano-engineered devices such as quantum sensors, thermoelectrics, and nanoelectronics. However, despite overwhelming experimental evidence for nondiffusive heat dissipation from nanoscale heat sources, the underlying mechanisms are still not understood. In this work, we show that for nanoscale heat source spacings that are below the mean free path of the dominant phonons in a substrate, close packing of the heat sources increases in-plane scattering and enhances cross-plane thermal conduction. This leads to directional channeling of thermal transport—a novel phenomenon. By using advanced atomic-level simulations to accurately access the lattice temperature and the phonon scattering and transport properties, we finally explain the counterintuitive experimental observations of enhanced cooling for close-packed heat sources. This represents a distinct fundamental behavior in materials science with far-reaching implications for electronics and future quantum devices.

     
    more » « less